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Abstract
Oobleck enables resilient distributed training of large DNN
models with guaranteed fault tolerance. It takes a planning-
execution co-design approach, where it first generates a set
of heterogeneous pipeline templates and instantiates at least
𝑓 + 1 logically equivalent pipeline replicas to tolerate any 𝑓

simultaneous failures. During execution, it relies on already-
replicated model states across the replicas to provide fast
recovery. Oobleck provably guarantees that some combina-
tion of the initially created pipeline templates can be used
to cover all available resources after 𝑓 or fewer simultane-
ous failures, thereby avoiding resource idling at all times.
Evaluation on large DNN models with billions of parameters
shows that Oobleck provides consistently high throughput,
and it outperforms state-of-the-art fault tolerance solutions
like Bamboo and Varuna by up to 13.9×.

CCS Concepts: • Computer systems organization→ De-
pendable and fault-tolerant systems and networks;Dis-
tributed architectures; Neural networks.

Keywords: Fault tolerant training, distributed training, hy-
brid parallelism, pipeline template
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1 Introduction
DNN models continue to become larger [49]. Many recent
advances in deep learning have been attributed to significant
increases in model size to hundreds of billions of parameters
and training on ever-growing datasets [5, 31, 32, 45]. Recent
studies suggest that a trillion-parameter model would require
at least 2TB of memory simply to store model parameters,
and tens or hundreds of TB for training [18, 24, 37, 38, 42].
Naturally, scaling large model training has received intense
attention over the past few years [3, 11, 29, 45, 53]. Dis-
tributed hybrid-parallel training [30, 56] that combinesmodel
and data parallelism has emerged as the primary approach
to training such large models.

Unfortunately, the likelihood of experiencing failures also
increases with the scale and duration of training [12, 17, 50].
The effect is further amplified by the synchronous nature of
DNN training, which causes all participating devices to idle
until the failed one has recovered, causing massive underuti-
lization. Indeed, teams from Meta, HuggingFace, and LAION
report significant underutilization from failures when train-
ing large models [2, 3, 53]. Failure rates are even higher for
training jobs that use spot instances in the cloud [1, 48].
Existing frameworks have little systematic support for

fault tolerance during hybrid-parallel training. Ensuring con-
tinuous operation in the presence of failures fundamentally
requires redundancy in one form or another. Model state re-
dundancy in data-parallel training is the only form of “free”
redundancy, because each worker already has a copy of the
model states. Most solutions harness the inherent redun-
dancy provided by data parallelism and utilize its embar-
rassingly parallel nature to elastically change the number
of GPUs while dynamically changing the global batch size
[16, 21, 34, 54]. However, they are unable to extend these
benefits to hybrid parallelism and are limited only to data-
parallel training.
In contrast, fault tolerance approaches tailored toward

hybrid parallelism struggle to leverage any inherent redun-
dancy. Instead, they introduce additional redundancy in var-
ious forms; e.g., having a pool of standby GPUs [3], using
checkpoints to reconfigure and restart [1], and performing
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redundant computations in anticipation of a possible fail-
ure [48]. Essentially, they consider overhead during training
vs. overhead to recover from failure(s), and choose one of
the two extremes (§2.2): if failures are infrequent, amortized
overhead for reconfiguration would also be low [1]; if fail-
ures are more frequent, then incurring some overhead during
training may be more preferable than spending significant
time in recovery [48].

In this paper, we present Oobleck, a fault-tolerant hybrid-
parallel training framework. It provides high training through-
put, guaranteed fault tolerance, and fast recovery without
introducing additional overhead. Pipeline templates are at the
core of Oobleck’s design. A pipeline template is a specifica-
tion of pipeline execution for a given number of nodes. They
are designed during the planning phase by Oobleck’s tem-
plate generator and reused during execution by Oobleck’s
execution engine. All pipeline templates are logically equiva-
lent yet physically heterogeneous; each has a different num-
ber of nodes and associated configurations that can be used
to instantiate a pipeline for a given model. Oobleck uses
one or more pipeline templates to create pipeline replicas
to exploit the inherent model states redundancy across the
replicas. Pipelines affected by failures can reconstruct model
states by copying missing layers from other replicas without
having to restart from a checkpoint.
More specifically, given a training job starting with the

number of maximum simultaneous failures to tolerate 𝑓 ,
Oobleck’s execution engine instantiates at least 𝑓 + 1 het-
erogeneous pipelines from the generated templates. The
fixed global batch is distributed proportionally to the com-
puting capability of heterogeneous pipelines such that all
pipeline replicas train roughly at the same rate. Upon fail-
ures, Oobleck avoids demanding analysis of finding a new
optimal configuration by simply reinstantiating pipelines
from the precomputed pipeline templates while achieving
maximum node utilization. This is always possible for 𝑓 or
fewer failures because Oobleck provably guarantees that a
combination of pipelines generated from those precomputed
templates can fully utilize all the remaining nodes.
We have implemented Oobleck on top of PyTorch and

HuggingFace Transformers [51] using components from
DeepSpeed [40] and Merak [19]. We evaluate Oobleck and
compare its performance against Bamboo and Varuna across
large models like GPT-3 with billions of parameters. Oobleck
outperforms the state-of-the-art solutions by up to 13.9× as
we consider different frequencies of failures, spot instance
traces, and models of different sizes and computation com-
plexity.

Overall, we make the following contributions in this paper.
• We present Oobleck, a novel framework for resilient dis-
tributed training that provides guaranteed fault tolerance
and maximizes throughput.

• Oobleck introduces pipeline templates to (re)instantiate
pipelines. Pipeline templates allow quick failure recovery
and utilization of all available GPUs.

• We implement and evaluate Oobleck with several large
models, e.g., variants of GPT-3, to demonstrate large im-
provements in terms of throughput and failure recovery.
Oobleck is open-source and available on GitHub.1

2 Background and Motivation
In this section, we briefly introduce hybrid parallelism that
is commonly used for large model training. We also discuss
existing fault tolerance strategies for hybrid-parallel training
and highlight their limitations.

2.1 Hybrid Parallelism
As DNN models continue to grow in size and are trained on
increasingly larger datasets [3, 45, 53], using just data paral-
lelism or model parallelism is often not enough to efficiently
train a DNN. Data parallelism splits and distributes input to
multiple GPUs, but it requires each GPU to hold the entire
model [16]. Model parallelism accommodates large model
training by splitting the model across multiple GPUs – for
example, pipeline parallelism splits the model into groups of
layers called stages, and tensor parallelism slices each model
layer into several tensor chunks. However, the former has
pipeline bubble overheads that decrease compute utilization
as the pipeline grows deeper [45]. The latter suffers from
high communication cost that cannot be hidden in computa-
tion, because it requires several all-reduce operations in the
critical path of both forward pass and back-propagation [37].
Consequently, a combination of data and model parallelism
techniques – aka hybrid parallelism – is used in practice to
train large DNN models [3, 11, 29, 30, 45].

2.2 Fault Tolerance in Distributed Training
Failures are the norm in distributed systems, and distributed
DNN training is no exception. The probability of experi-
encing one or more failures increases with the increasing
number of GPUs and the duration of training. For instance, a
Meta AI team suffered approximately 100+ hardware failures
and had to do 100+ major restarts during OPT-175B train-
ing [53]. Because of the synchronous nature of distributed
training, the cost of even one failure is multiplied: all the
GPUs must idle until the impact of failure has been mitigated.
The impact of this phenomenon was recently highlighted in
detail by a LAION team when training CLIP models [2] as
well as a BigScience team during BLOOM training [3].

Several recent works have focused on fault-tolerant data-
parallel training via dynamically changing the global batch
size [16, 21, 34, 52]. Fault-tolerant hybrid-parallel training
is more challenging because the model is distributed across
multiple GPUs. There are two primary approaches.
1https://github.com/SymbioticLab/Oobleck
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Figure 1. Effective time spent in training for Bamboo (B) and Varuna
(V) running BERT-large and GPT-3 6.7b models for different frequency
of failures (6h and 10m). An optimistic upper-bound of the optimal is
1.00, when training remains unaffected by failure(s).

1. Checkpointing: Checkpointing is a popular mechanism
to persistently store training progress. For example, the
BigScience team training the BLOOM model [3] and the
Meta AI team training the OPT model [53] used this
recently. However, manual reconfiguration after identi-
fying and replacing the failed GPUs with spare ones is
time-consuming. Varuna [1] introduced job morphing to
dynamically reconfigure training jobs to achieve the best
performance with the remaining resources after restart-
ing from the most recent checkpoint. While this does not
introduce significant fixed overhead, recovery time can
be unsustainable when the failure rate is high [48].

2. Redundant computation (RC): To avoid reconfiguration
and restart overheads, Bamboo [48] recently introduced
redundant computation (RC) where each pipeline stage is
redundantly computed in two subsequent nodes. When
a node fails, the backup node computes the forward and
backward passes of the failed node. RC introduces fixed
computational overhead due to redundancy in computing
and memory overhead of holding redundant states in
each node. Note that reconfiguration and restart from a
checkpoint is still necessary if two adjacent nodes fail.

2.3 Limitations of the State-of-the-Art
State-of-the-art approaches for fault-tolerant hybrid-parallel
training do not provide any systematic fault tolerance guar-
antees, and they have large overheads, especially when mod-
els become larger.
Figure 1 shows the time effectively spent in training (i.e.,

the time that leads to training throughput) using Varuna and
Bamboo when training BERT-Large and GPT3-6.7B – with
340 million and 6.7 billion parameters, respectively – when
one failure happens every six hours and every 10 minutes
on average. Detailed experimental setup is in Section 7.1.
Varuna provides higher training throughput compared to
Bamboo, but it has noticeable job restart overhead. Although
some recent proposals improved checkpointing overhead
[10, 28], loading checkpoints upon restarts is still in the
critical path.When failures becomemore frequent, restarting
overheads dominate. Additionally, performance degradation

after a failure is not proportional to the number of failures,
but worse. This is because Varuna’s hybrid parallelism uses
a grid topology; one GPU failure breaks the grid of GPUs,
leaving some of them idle.
Bamboo, in contrast, reduces checkpointing and restart

overheads, but RC in Bamboo introduces significant perfor-
mance overhead, even when some portion of the overhead
is hidden in pipeline bubbles. Specifically, its forward RC
redundantly computes the next stage all the time, lower-
ing throughput even in the absence of failures. Backward
RC takes place only after failure(s), but it adds additional
overhead to some pipelines’ iteration times, making them
stragglers and inflating the iteration time of synchronous
training. Worse, Bamboo also needs to restart with a full
reconfiguration from a checkpoint for as few as two failures
when two adjacent nodes fail.

Finally, both approaches perform poorly for larger models,
especially when failures are frequent. Bamboo runs out of
memory and Varuna spends most of the time preparing to
train. We aim to design a solution that works well regardless
of the frequency of failures both in terms of the fault toler-
ance guarantee it provides and the throughput it achieves.

3 Oobleck Overview
Oobleck is a resilient distributed training platform for large
models with guaranteed fault tolerance. It presents the con-
cept of pipeline templates to achieve high throughput and
fast fault tolerance at the same time (§3.1). Its fault tolerance
guarantees allow for reconfiguration without restarts for
up to 𝑓 simultaneous failures in the worst case (§3.2). We
also discuss Oobleck’s overall architecture (§3.3) and how it
integrates with the training lifecycle (§3.4).

3.1 Pipeline Templates
Oobleck introduces pipeline templates, each of which is a
pipeline specification that defines how many nodes should
be assigned to a pipeline, howmany stages to create, and how
to map model layers in stages to GPUs. All pipelines instan-
tiated by Oobleck are from precomputed pipeline templates.
In practice, Oobleck instantiates multiple (possibly heteroge-
neous) pipelines from a set of heterogeneous pipeline tem-
plates to fully utilize an arbitrary number of nodes evenwhen
they do not form a grid. Decoupling “planning” (pipeline tem-
plate generation) from “execution” (pipeline instantiation)
enables fast failure recovery; a pipeline with lost node(s)
is replaced with a new pipeline instantiated from another
pipeline template that requires a fewer number of nodes.

3.2 Fault Tolerance Guarantees
Oobleck guarantees fault tolerance without restart for up to
𝑓 simultaneous pipeline failures, because in the worst case,
𝑓 node failures are enough to cause 𝑓 pipelines to fail. Con-
sider Figure 2, where there are three pipeline replicas each
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Pipeline with 4 Nodes Failed Nodes

Pipeline 0

Pipeline 1

Pipeline 2

S0 S1 S2 S3

(a) Failures happen to nodes with the
same stage (S1 lost, not recoverable)

S0 S1 S2 S3
Pipeline 0

Pipeline 1

Pipeline 2

(b) Failures in random places (all
stages alive, recoverable)

Figure 2. An example of Oobleck’s fault tolerance guarantees with
𝑓 = 2. S refers to a pipeline stage. (a) In the worst case, we lose model
states (a stage) if more than 𝑓 nodes fail. (b) In the general case,
however, more than 𝑓 node failures can be tolerated.

with four stages – i.e., each stage has three replicas. We can
tolerate at most two simultaneous node failures in the worst
case, because if three failures take out all three replicas of
any stage (stage 1 in Figure 2a), the pipelines cannot be re-
covered. In general, however, Oobleck can tolerate in excess
of 𝑓 node failures, provided that a minimum of one copy
of the entire model states is retained across the pipelines.
For example, even after eight node failures in Figure 2b, one
copy of each stage still remains alive; hence, it is recoverable.

3.3 System Components
Oobleck extends existing ML training frameworks in two
primary aspects (Figure 3). First, it has a pipeline template
generator to generate a set of heterogeneous pipeline tem-
plates that can be used by the execution engine for pipeline
instantiation. Pipeline templates are created only once and
never change during the entire training.
Second, Oobleck has a distributed execution engine that

enables efficient heterogeneous pipeline execution. It instan-
tiates pipelines from the given set of pipeline templates con-
sidering the user’s fault tolerance threshold (𝑓 ) and batch
information (global batch and microbatch size). It creates at
least 𝑓 + 1 (possibly heterogeneous) pipeline replicas so that
at least one copy of the model exists anytime during train-
ing for up to 𝑓 simultaneous failures. The batch distributor
calculates the number of microbatches for each pipeline that
balances execution latency between heterogeneous pipelines.
Pipeline instantiation and batch distribution happens when-
ever a node fails or is added. The node change monitor de-
tects node failure(s) and node additions; then the execu-
tion engine dynamically reconfigures using precomputed
pipeline templates.

3.4 Training Lifecycle
Oobleck users submit training jobs with a fault tolerance
threshold 𝑓 , a model and dataset to train on 𝑁 homogeneous
nodes (received from a GPU cluster manager [17, 50]), and
batch size information 1 (Figure 3). Oobleck’s pipeline tem-
plate generator first creates a set of pipeline templates 2 .
The distributed execution engine instantiates pipelines from
the templates and deploys them on the cluster 3 .

Node Cluster

Job Submission1

New Node Addition
& Failure Detection 4 3

Pipelines
Instantiation

Pipeline Template 
Generator

Agent Agent

GPUs

Agent

GPUs

Agent

GPUs
Pipeline Execution

Agent

GPUs

Agent

GPUs
Pipeline Execution

GPUs
…

Distributed Execution 
Engine

5
Dynamic
Reconfiguration

Node Change Monitor

Pipeline Instantiator

Batch Distributor

2

Pipeline 
Templates

Oobleck

Agent
GPUs

Figure 3. Oobleck system overview.

When node failure(s) happen 4 , if we have a complete
model replica, Oobleck does not restart but reconfigures the
pipelines 5 . The execution engine reinstantiates pipelines
from the templates to make sure all nodes are used. During
pipeline reinstantiation, nodes share information about the
ownership of model states and copy missing model states
from others. After reconfiguration and model states copying
are done, nodes resume training. A job runs until it reaches
the target accuracy, a user terminates it, or Oobleck cannot
maintain 𝑓 + 1 pipeline replicas. If the cluster cannot hold
𝑓 + 1 replicas, Oobleck stores the progress, informs the user,
and exits. Thereafter, the user can decide to restart training
from a recent checkpoint once enough nodes have recovered
to maintain 𝑓 + 1 replicas.

4 Oobleck Planning Algorithm
Oobleck tolerates 𝑓 simultaneous failures by instantiating 𝑟
(≥ 𝑓 + 1) heterogeneous pipeline replicas of the same model.
Each of these logically equivalent pipeline replicas performs
hybrid-parallel training. Unlike existing solutions that force
a single homogeneous hybrid-parallel configuration over
a rigid grid (# GPUs per pipeline stage × # pipeline stages
× # pipeline replicas) [1], Oobleck’s heterogeneous pipeline
execution can utilize all available GPUs.
Because the number of available nodes can vary over

time due to failures, Oobleck requires an effective mech-
anism to derive all possible configurations of heterogeneous
pipelines that can utilize all available GPUs at any point in
time. Oobleck’s pipeline template generator computes a fixed
set of pipeline templates at the beginning of the training job
for the entire training (§4.1). The pipeline execution engine
instantiates zero or more copies of each of the templates (i.e.,
a collection of heterogeneous pipeline replicas) to utilize all
currently available nodes (§4.2).
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3 Pipeline Templates

Number of Nodes (N) = 13
Model Memory Requirements
Fault Tolerance Threshold (f)
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(a) Generating pipeline templates (§4.1)

Best Plan
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(b) Pipeline instantiation (§4.2)

Figure 4. Oobleck’s planning algorithm overview. First, it generates a set of pipeline templates, a combination of which can utilize all available
nodes. A template is a specification of pipelines, how many nodes are assigned and how GPUs in the nodes should be mapped to pipeline stages.
Then, pipelines are instantiated following the fastest (best) plan after checking all possible plans. A plan includes how many pipelines should be
instantiated from each pipeline template given the number of nodes and how batch size should be distributed to the pipelines.

4.1 Generating Pipeline Templates
Each pipeline template created by Oobleck is a set of speci-
fications that defines how many nodes to use, and how the
given GPUs and model layers are mapped to make pipeline
stages use all those nodes. Figure 4a illustrates this process.
In this example, we generate a set of pipeline templates.
We first determine the number of heterogeneous pipeline
templates and their node specifications (number of nodes)
needed to utilize all available nodes, given the initial number
of nodes 𝑁 , the amount of memory required to train a model,
and the fault tolerance threshold 𝑓 (§4.1.1). In this case, three
heterogeneous pipeline templates with 2, 3, and 4 nodes have
been chosen. Then, for each template, we partition the model
and map the available GPUs to them to create pipeline stages
that minimize the iteration time (§4.1.2).

4.1.1 Node Specification. Because pipeline templates never
change during training and generating arbitrarily many of
them is expensive, we must determine how many pipeline
templates are needed, and then how many nodes each of the
templates should use, so that some combination of them can
always utilize any number of available nodes, even when
we have fewer number of nodes than at the beginning after
failures.
This can be formulated as the Frobenius problem [39],

which finds the Frobenius number 𝑔, the largest number that
cannot be represented as a linear combination of integers.
Meaning, any number of available nodes after failures𝑁 ′ > 𝑔

can be expressed as a linear combination of the given pipeline
templates, each with a specified integer number of nodes.

If we represent the number of pipeline templates as 𝑝 and
the number of nodes for the 𝑖-th pipeline template be ordered
values 𝑛𝑖 (0 < 𝑛𝑖 ≤ 𝑁 ) where 𝑛𝑖 < 𝑛𝑖+1, we can guarantee
that any feasible 𝑁 ′ ≥ (𝑓 +1)𝑛0 is always larger than 𝑔 when
the following conditions are met [43].
1. 𝑝 > 𝑛0 − 1.
2. 𝑛𝑖 are consecutive integers (𝑛𝑖 + 1 = 𝑛𝑖+1).

See Appendix A for a proof.
We set the lower bound of 𝑁 ′ as (𝑓 + 1)𝑛0: the smallest

number of nodes required to maintain 𝑓 + 1 replicas of the
model, because𝑛0 is the smallest number of nodes for a single
pipeline. Any smaller 𝑁 ′ cannot respect the fault tolerance
threshold 𝑓 .

Choice of 𝑛0 and 𝑝. There are several choices for a set
of pipeline templates that satisfy the conditions depending
on the values of 𝑛0 and 𝑝 . We choose the smallest possible
𝑛0 and the largest 𝑝 . We select the minimum 𝑛0 because
shallow pipeline execution (smaller 𝑛0) typically takes less
time for the same amount of computation [45]. Although a
large 𝑝 does not directly benefit planning, it helps reduce
reconfiguration overhead. The largest 𝑝 can be calculated
from the largest possible value for 𝑛𝑝−1 (referred to as 𝑛max

𝑝−1 ).
When all but one of the 𝑓 + 1 replicas use 𝑛0 nodes and the
last one uses all the remaining nodes, 𝑛max

𝑝−1 = 𝑁 − 𝑓 𝑛0. We
now have 𝑝 to be the length of the range from 𝑛0 to 𝑛max

𝑝−1 .

4.1.2 GPU–Stage Mapping. Given the number of nodes
in each pipeline template, wemust determine how to best use
them by finding the number of pipeline stages, partitioning
the model layers to the stages, and mapping the nodes to
those stages. We propose a divide and conquer algorithm
to find the mapping that minimizes the iteration time. This
algorithm divides the model into pipeline stages and the
nodes into a set of GPUs at the same time, and then maps
each of them so that we utilize all GPUs in the given nodes.
It then iterates over all possible combinations of GPU–stage
mapping and finds the one that minimizes the iteration time.

Let 𝑇 (𝑆 ′, 𝑢, 𝑣, 𝑑) be the minimum iteration time for layers
(𝑙𝑢, 𝑙𝑢+1, . . . , 𝑙𝑣−1) partitioned into 𝑆 ′ stages and running on
𝑑 GPUs. A pipeline for the entire model using all GPUs in
the pipeline template then has the minimum iteration time
𝑇 (𝑆, 0, 𝐿, 𝑛 ·𝑀), where the model has 𝐿 layers, and there are
𝑛 number of nodes in the pipeline template, each of which
has𝑀 GPUs.
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Figure 5. 1F1B pipeline execution breakdown (𝑇 1,𝑇 2,𝑇 3)

To calculate the minimum iteration time of a pipeline, the
algorithm considers its critical path and breaks 𝑇 down into
three terms 𝑇1, 𝑇2, and 𝑇3 (Figure 5). 𝑇1 represents 1F1B
initialization and teardown phases of pipeline execution,
which include one forward and one backward for all stages.
The steady phase in the middle has one forward and one
backward pass alternating. The critical path may still include
forward and backward passes of other stages than the slowest
one on each end, similar to𝑇 1. We thus split the steady phase
into 𝑇2 and 𝑇3. 𝑇2 includes the slowest stage alternating
forward and backward, and 𝑇 3 is the remaining part.

Divide. In the division phase, we divide the model and the
nodes at the same time. Division continues until we can-
not partition either GPUs or model layers, or the number of
partitions matches the desired number of stages. If multiple
GPUs are assigned to a pipeline stage, tensor parallelism is
used to accelerate it. Figure 6 illustrates such a division and
mapping process. After both sub-problems are conquered,
the algorithm combines their results to calculate the execu-
tion time of a multi-stage pipeline created by connecting two
sub-problems. From the definitions of 𝑇1, 𝑇2, and 𝑇3, the
division and combination process can be defined as recursive
structures for each term:
𝑇 1𝑠,𝑘,𝑚 (𝑆 ′, 𝑢, 𝑣, 𝑑)
= 𝑇 1𝑠,𝑘,𝑚 (𝑠,𝑢, 𝑘,𝑚) +𝑇 1𝑠,𝑘,𝑚 (𝑆 ′ − 𝑠, 𝑘 + 1, 𝑣, 𝑑 −𝑚) (1)

𝑇 2𝑠,𝑘,𝑚 (𝑆 ′, 𝑢, 𝑣, 𝑑 | 𝑘∗)
= (𝑁𝑏 − 𝑆 ′ + 𝑘∗ − 1) (𝐹𝑠𝑘∗,𝑚 + 𝐵𝑠𝑘∗,𝑚 )

(2)

𝑇 3𝑠,𝑘,𝑚 (𝑆 ′, 𝑢, 𝑣, 𝑑 | 𝑘∗)

=


𝑇 3𝑠,𝑘,𝑚 (𝑠,𝑢, 𝑘,𝑚 | 𝑘∗1)
+𝑇 1𝑠,𝑘,𝑚 (𝑆 ′ − 𝑠, 𝑘 + 1, 𝑣, 𝑑 −𝑚) if 𝑘∗ == 𝑘∗1

𝑇 3𝑠,𝑘,𝑚 (𝑆 ′ − 𝑠, 𝑘 + 1, 𝑣, 𝑑 −𝑚 | 𝑘∗2) else

(3)

We iterate over 𝑠 , 𝑘 , and𝑚 globally, and find a (𝑠, 𝑘,𝑚) that
minimizes 𝑇1𝑠,𝑘,𝑚 + 𝑇2𝑠,𝑘,𝑚 + 𝑇3𝑠,𝑘,𝑚 . Each 𝑇1𝑠,𝑘,𝑚 , 𝑇2𝑠,𝑘,𝑚 ,
and 𝑇 3𝑠,𝑘,𝑚 is the solution of 𝑇 1, 𝑇 2, and 𝑇 3, respectively.
𝑘∗ denotes the index of the slowest stage, derived from

either 𝑘∗1 or 𝑘∗2 , the slowest stage indices of the two sub-
problems. 𝑇2 depends on the number of microbatches (𝑁𝑏 )
deployed to the pipeline, which is not yet determined. From

3 4
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A Mapping Result of a 4-Stage Pipeline 

Node Specification
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6 layers
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GPUs / Layers

21

21 3 4 65
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3 4

Figure 6. A toy example of division process for a 4-stage pipeline
template with 3 nodes (template B in Figure 4) and a model with 6
layers. The model and the GPUs in nodes are divided into two sub-
problems together. When division is done, each group of partitioned
GPUs and layers form a stage. The algorithm iterates all combinations
of layer partitioning and GPU partitioning to find the minimum 𝑇 .

prior observations that the pipeline bubble overhead is neg-
ligible with 𝑁𝑏 ≥ 4𝑆 ′ [15], we temporarily use 𝑁𝑏 = 4𝑆 ′
in planning. The structure of 𝑇3 is special as it includes
𝑇1 in Equation 3. T3 is an accumulation of forward and
backward time for all the following stages after the slowest
(
∑𝑆′−1

𝑘=𝑘∗ (𝐹+𝐵)). If 𝑠𝑘∗ is in the first half sub-problem (i.e. 𝑠𝑘∗ ==

𝑠𝑘∗
1
), it can be broken down to

∑𝑠
𝑘=𝑘∗ (𝐹 + 𝐵) +∑𝑆′−1

𝑘=𝑠+1 (𝐹 + 𝐵),
each of which represents 𝑇3 of the first half and 𝑇1 of the
second half, respectively.

Conquer.When a problem has just one stage, we can eas-
ily calculate the execution time of running a stage 𝑠 with
𝑙𝑢, . . . , 𝑙𝑣−1 layers on 𝑑 GPUs:

𝑇 1(1, 𝑢, 𝑣, 𝑑) =𝐹𝑠,𝑑 + 𝐵𝑠,𝑑 =

𝑣−1∑︁
𝑘=𝑢

(𝐹𝑙𝑘 ,𝑑 + 𝐵𝑙𝑘 ,𝑑 )

𝑇 2(1, 𝑢, 𝑣, 𝑑) =2(𝐹𝑠,𝑑 + 𝐵𝑠,𝑑 )
𝑇 3(1, 𝑢, 𝑣, 𝑑) =𝐹𝑠,𝑑 + 𝐵𝑠,𝑑

(4)

There is one requirement for 𝑑 GPUs running a single stage:
all𝑑 GPUs should be in the same node. It is reasonable because
if GPUs span several nodes, the cross-node network becomes
a bottleneck and lowers the utilization of high-throughput
intra-node network in collective communications done in
intra-layer parallel execution. We simply mark all 𝑇 values
as∞ if cross-node GPUs are given.

Choosing the number of stages 𝑆 .We do not know which
𝑆 provides the minimum iteration time. Therefore, we it-
erate over possible values of 𝑆 in (𝑛, 𝑛 + 1, . . . , 𝐿). Because
we partition the model at layer granularity, the number of
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Figure 7. The dynamic programming algorithm finding all list of
feasible Xs. Underlined 𝑥2 = 1 is added by \ () function.

stages cannot exceed the number of layers 𝐿. The minimum
is derived from the constraint that a single stage cannot be
assigned to two or more nodes. If 𝑆 becomes less than 𝑛, it
breaks the constraint and some stages should have at least
two nodes assigned according to the pigeonhole principle.
Time complexity of the naive implementation. The
recursive stage division happens in𝑂 (𝐿). For every division,
stages and layers are partitioned and they are assigned to
two device sub-clusters. Stage and layer partitioning have
𝑂 (𝐿) choices. Partitioning nodes is done in 𝑂 (𝑛), but GPUs
within a single node can further be partitioned, adding𝑂 (𝑀).
Time complexity of layer partitioning and device assignment
for a given number of stage is 𝑂 (𝐿𝑛𝑀). Divide and conquer
happens for each feasible 𝑆 , and iterating over 𝑆 values is
𝑂 (𝐿 − 𝑛). Therefore, the overall algorithm time complexity
per pipeline template is 𝑂

(
(𝐿 − 𝑛)𝐿3𝑛𝑀

)
.

Using memoization to reduce complexity. We cache all
intermediate results to accelerate the divide and conquer
algorithm. It boosts not only getting the mapping of one
pipeline template but also helps in deriving the mapping of
the other pipeline templates. In fact, running the algorithm
for the largest pipeline template (with 𝑛𝑝−1 nodes) is enough
to calculate intermediate caches required for building the
mapping of all the other pipeline templates. With all inter-
mediate caches present, calculating the mapping of another
smaller pipeline template can be done in 𝑂 (𝐿𝑛).

4.2 Pipeline Instantiation
Given a set of pipeline templates, we know by construc-
tion (§4.1.1) that there exists a combination of them that
Oobleck can instantiate to utilize all available nodes. How-
ever, such a combination of heterogeneous pipelines may
not be unique. So we first find all such feasible combinations
(§4.2.1). Oobleck chooses a plan with the highest estimated
throughput among all the feasible combinations (§4.2.2).

4.2.1 EnumeratingAll InstantiationOptions. Although
we know that we can utilize all available nodes with the
set of pipeline templates, the number of pipelines to be
instantiated from each pipeline template is undetermined.

Worse, there may be several pipeline configurations that use
all nodes from the same pipeline template set. For exam-
ple, 13 nodes can be represented as the plan 1 in Figure 4b
(1 · 𝑛0 + 1 · 𝑛1 + 2 · 𝑛2), but also as (0 · 𝑛0 + 3 · 𝑛1 + 1 · 𝑛2),
and more. We therefore enumerate all feasible pipeline sets
for currently available nodes and pick one that maximizes
training throughput.

LetX(𝑝, 𝑁 ) be a list of all feasible pipeline sets [X0,X1, ...].
Each X𝑖 is a set of the number of pipelines to be instan-
tiated (𝑥0, 𝑥1, . . . , 𝑥𝑝−1), using 𝑝 number of heterogeneous
pipeline templates with the number of nodes specification
(𝑛0, 𝑛1, . . . , 𝑛𝑝−1), so that all 𝑁 nodes are used by pipelines.
A feasible X𝑖 satisfies the following requirements:
1. 𝑁 = 𝑥0𝑛0 + 𝑥1𝑛1 + · · · + 𝑥𝑝−1𝑛𝑝−1 (All nodes are used).
2.

∑𝑝−1
𝑗=0 𝑥 𝑗 ≥ 𝑓 + 1 (Number of pipelines is at least 𝑓 + 1).

We exploit dynamic programming for the coin change
problem to find X. The coin change problem finds a combi-
nation of coins that add up to the given amount of money [4].
It is an equivalent problem to Requirement 1 above if we
replace denominations of each coin with 𝑛𝑖 , and the given
amount of money with 𝑁 . We formulate the dynamic pro-
gramming structure as:

X(𝑝 ′, 𝑁 ′) = X(𝑝 ′ − 1, 𝑁 ′) ++\ (X(𝑝 ′, 𝑁 ′ − 𝑛𝑝′), 𝑝 ′) (5)

where ++ means concatenating two lists, and \ (X, 𝑝 ′) is a
function that increases 𝑥𝑝′ by 1 in every X𝑖s in X.

Figure 7 shows the execution of the dynamic programming
algorithm. The two terms in Equation 5 are associated with
each black boxes.X in the red box should include all X𝑖s that
use all seven nodes in instantiating pipelines using the three
different pipeline templates (𝑛0 = 2, 𝑛1 = 3, 𝑛2 = 4). X in 1 ,
all X𝑖s use seven nodes and are already feasible for X(3, 7).
We just copy them. X in 2 , however, only uses three nodes
in total. By adding one four-node pipeline (increasing 𝑥2 by
1), all X𝑖s use seven nodes and become feasible for X(3, 7).

The dynamic programming is done in 𝑂 (𝑁𝑝) filling all
table elements. X in the bottom-right corner of the table
contains all feasible X𝑖s. To satisfy Requirement 2, we filter
the list and obtain sets with

∑𝑝−1
𝑗=0 𝑥 𝑗 ≥ 𝑓 + 1.

4.2.2 Calculating Throughput with Batch Distribu-
tion. Oobleck’s execution engine needs to choose from sev-
eral feasible X𝑖s. We calculate the overall throughput for
each X𝑖 and choose the one that maximizes the throughput.
To calculate throughput, we need to determine the batch size
of each pipeline. While the global batch size is given by the
user, it is Oobleck’s responsibility to distribute them across
heterogeneous pipelines to maximize overall throughput.
It is crucial to assign work proportional to the amount of
computing power of each pipeline; otherwise, the overall
throughput will be decreased due to stragglers. We refer to
this as batch distribution. Given the global batch size 𝐵 and

388



SOSP ’23, October 23–26, 2023, Koblenz, Germany Insu Jang, Zhenning Yang, Zhen Zhang, Xin Jin, and Mosharaf Chowdhury

A B C D

A C D
Failed Nodes

Avail. Nodes

(a) A node failure in a 4-node pipeline. We have a 3-node pipeline template,
thus a new pipeline with 3 nodes is instantiated, which replaces the existing
one.

A B C D A B C

E F E D

Move to another 
pipeline

(b) A node failure in a 2-node pipeline. Since there is no template for one node,
it gets another node from another pipeline to keep the 2-node pipeline. Two
affected pipelines reinstantiate or reconfigure themselves.

A B C D+

A B C
Merge pipelines

(c) A node failure in a 2-node pipeline. Because it cannot borrow a node from
any other pipeline, it is merged with another pipeline.

Figure 8. Three steps of pipeline reinstantiation. After reinstantia-
tion is done, missing layers in a new pipeline are copied from other
pipelines.

microbatch size 𝑏, batch distribution calculates the number
of microbatches for each pipeline that minimizes stragglers.
Let 𝑁𝑏,𝑖 be the number of microbatches for 𝑖-th pipeline

(0 ≤ 𝑖 < 𝑥, 𝑥 =
∑𝑝−1

𝑗=0 𝑥 𝑗 ) and 𝑇𝑖 be the iteration time of the
pipeline with a single microbatch of size 𝑏. Minibatch size for
𝑖-th pipeline can be calculated as 𝑁𝑏,𝑖 × 𝑏. By adjusting 𝑁𝑏,𝑖 ,
we minimize variance between different pipelines’ batch
processing times. We formulate it as an integer optimization
problem:

minimize
𝑥−1∑︁
𝑖=0

(𝑁𝑏,𝑖𝑇𝑖 − 𝑁𝑏𝑇 )2

subject to
𝑝−1∑︁
𝑖=0

𝑁𝑏,𝑖𝑏𝑥𝑖 = 𝐵,

𝑁𝑏,𝑖 ∈ N

(6)

where 𝑁𝑏𝑇 is the average iteration time of all (0 ≤ 𝑖 < 𝑥)
pipelines. Any integer nonlinear optimization solver can be
used to get 𝑁𝑏,𝑖 and thus minibatch size for each pipeline.
Note that the optimization may fail to redistribute batch

properly, primarily when the global batch size is too small
and cannot be split to integers. Oobleck does not change the
global batch size arbitrarily in such cases. Instead, it recom-
mends an adjusted global batch size close to the original one
but distributable.

5 Dynamic Reconfiguration
Upon a node failure, the pipeline it was assigned to becomes
incomplete and has missing model states; therefore, train-
ing halts in that pipeline. Pipelines affected by failures are
replaced with new pipelines created via pipeline reinstan-
tiation using precomputed pipeline templates (§5.1). After
reinstantiating pipelines, the nodes copy missing layers from
unaffected pipeline replicas. Oobleck also redistributes batch
in response to the pipeline configuration change (§5.2). Pro-
vided that we have copies of the model states, Oobleck can
recover from failures until we have fewer than (𝑓 + 1)𝑛0
nodes.

5.1 Pipeline Reinstantiation
Oobleck instantiates a new pipeline from one of the pipeline
templates, replacing the existing one affected by failures.
Given our limited number of pipeline templates, there might
not be a suitable pipeline template for the remaining num-
ber of nodes. Thus, pipeline reinstantiation is done in three
steps: simple reinstantiation, borrowing nodes, and merging
pipelines.

For each pipeline, Oobleck first checks if there is an instan-
tiable pipeline template with remaining nodes; if so, Oobleck
simply reinstantiates it and replaces the old one (Figure 8a).
If there is no instantiable pipeline template with remaining
nodes, Oobleck tries to borrow nodes from other pipelines un-
til we have enough nodes to instantiate the smallest pipeline
template (Figure 8b). Pipelines that yield their nodes should
also be reinstantiated with fewer nodes.
After many reconfigurations and node borrowings, all

pipelines may not be able to yield their nodes. When failures
happen at this moment, the pipeline affected by failures
cannot be reinstantiated due to a lack of nodes. In such a
case, Oobleck merges pipelines to create a bigger pipeline
(Figure 8c). It is guaranteed that we have an instantiable
pipeline template for a merged pipeline if it has at least 𝑛0
nodes (the minimum number of nodes to maintain one single
pipeline). See Appendix B for a proof.

5.2 Batch Redistribution
After pipeline reinstantiation, execution configuration has
been changed and distributed batches no longer ensure bal-
anced execution. Oobleck runs Equation 6 again given the
current set of the number of pipeline instances and continues
training with a newly calculated batch size. Each pipeline
may have more batches to compute, but the global batch size
remains constant.

6 Implementation
We implement Oobleck in Python using PyTorch [23] and
HuggingFace Transformers [51] using components from
Merak [19] in using PyTorch fx symbolic tracer [41] to cre-
ate pipelines and from DeepSpeed [40] to run them. For the
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Figure 9. Heterogeneous pipeline execution with one 3-stage pipeline
and one 2-stage pipeline. Allreduce synchronization happens at the
end of iteration and done in layer granularity to communicate between
multiple GPUs.

implementation of 3D parallelism, Oobleck has integrated
PyTorch Fully Sharded Data Parallel (FSDP) [55] as a replace-
ment for tensor parallelism in each stage [37], pipeline par-
allelism, and data parallelism. We have used Pyomo library
and its Mixed-Integer Nonlinear Decomposition Toolbox
(MindtPy) solver for non-linear integer optimization [6, 13].
Here, we elaborate on the key challenges addressed in im-
plementing Oobleck.

6.1 Model Synchronization Between Heterogeneous
Pipelines

Model gradient synchronization between pipelines in hybrid
parallelism is typically done at pipeline stage granularity.
However, because heterogeneous pipelines in Oobleck have
different stage configurations, stage-wise synchronization
does not work. Oobleck instead breaks down stages into
layers and synchronizes them individually, similar to Py-
Torch bucketing [23]. Figure 9 illustrates an example of a
6-layer model execution with two heterogeneous pipelines.
Stage E in the 2-stage pipeline has 3 layers to synchronize
which are stored in stage B and C in the 3-stage pipeline.
Oobleck performs synchronization for each individual layer
with potentially different peer nodes.

Data synchronization in smaller data might have perfor-
mance issue because it might not fully saturate the network.
We overlap communication with computation to offset in-
creased communication latency [23].

6.2 Detecting Node Failures
Oobleck uses NCCL for communication between GPUs. How-
ever, NCCL cannot detect unexpected communication chan-
nel disconnection and hangs when tries to communicate
with the failed node until a timer expires. To detect a node
failure immediately, we launch a CPU process on each node
and establish a TCP connection to a centralized CPU process.
When a node dies, a socket disconnection event is triggered
and broadcasted for reconfiguration.

7 Evaluation
We evaluate the effectiveness of Oobleck on large DNN mod-
els with 340M to 6.7B parameters and compare it against both
Bamboo and Varuna. We summarize the results as follows:

Table 1. Model and batch configurations. * in Bamboo indicates the
largest possible microbatch runnable in our evaluation environment.
X means not runnable even with 1 microbatch size.

# Params Global
Batch

Microbatch Size
Bamboo Varuna Oobleck

BERT-Large [9] 340M 8192 4* 32 32
GPT-2 [36] 345M 8192 1* 32 32

GPT-3 Medium [5] 350M 8192 X 16 16
GPT-3 2.7b [5] 2.7B 1024 X 2 2
GPT-3 6.7b [5] 6.7B 1024 X 2 2

• Oobleck outperforms the state-of-the-art solutions by up
to 13.9× when nodes fail more frequently and matches
them as failures become less frequent (§7.2).

• Oobleck’s benefits extend to real-world settings where
nodes are out and join back following spot instance traces.
It outperforms the rest by up to 9.1× on average (§7.3).

• Ablation studies show that Oobleck’s one-time planning
overhead is low and it has high GPU utilization (§7.4).

7.1 Experimental Setup

Cluster setup. We evaluate Oobleck using 30 NVIDIA A40
GPUs with 40GB GPU memory each. The GPUs are con-
nected to each other via a 200Gbps Mellanox ConnectX-6
InfiniBand adaptor for communication.
Varuna requires a remote object storage to store check-

points for fault tolerance. We deploy a distributed object stor-
age that consists of 6 nodes with two Intel Xeon Gold 6330
CPUs with 28 cores each, 512GB CPU memory, a 4TB PCIe
4.0 NVMe drive, and a 200Gbps Mellanox ConnectX-6 In-
finiBand adaptor, respectively. We use MinIO for distributed
object storage software [27].
Baselines. We compare Oobleck to the following baselines:
• Varuna [1]: A resilient training framework based on au-
tomated parallel configuration and checkpoints [26].

• Bamboo [48]: A resilient training framework based on
redundant computation without full restart [46].

Neither of them supports 3D parallelism; hence, Oobleck
uses one GPU per node configuration to avoid its planner
generating plans that cannot be implemented in our base-
lines.

Bothworks focus on utilizing spot instances, while Oobleck
supports general fault tolerance including preemptions in
spot instance environments. Spot instance environments
have a unique mechanism of preemption notification; the
system is notified prior to actual preemption happening. In
our spot instance-based evaluation, all three frameworks
leverage early warning. In general, however, there is no such
notification.

For Varuna, we periodically perform synchronous check-
pointing for every 10 iterations following their continuous
checkpointing policy [1].
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Table 2. Throughput (samples/s) with different frequency of failures. Bamboo was not able to run any GPT-3 model due to lack of memory (OOM).

Models BERT-Large GPT-2 GPT-3 Medium GPT-3 2.7b GPT-3 6.7b

Failure Frequency 6h 1h 10m 6h 1h 10m 6h 1h 10m 6h 1h 10m 6h 1h 10m

Bamboo 77.04 75.60 69.84 17.47 17.13 16.01
Varuna 260.11 246.03 173.52 86.51 85.17 76.39 29.50 28.49 20.19 7.27 6.53 1.76 4.14 2.69 0.26
Oobleck 287.10 286.28 282.11 85.59 85.42 84.80 29.30 29.21 28.70 7.29 7.23 6.89 4.33 4.22 3.55

Workloads. Table 1 lists model configurations. We adopt
GPT-2 and BERT-Large from Bamboo and Varuna, and add
three different configurations of GPT-3 from OpenAI [5] to
verify its scalability. Although our evaluation only shows
transformer models for comparison against two predeces-
sors, Oobleck’s design is not limited to transformer language
models and can support other DNN models. For all evalua-
tions, we use the Wikitext dataset [25] and TF32 precision.

We also list batch size configurations for each framework
in Table 1. The reasons behind the discrepancy in batch sizes
are twofold. First, Bamboo needs to store additional model
states for redundant computation, requiring 2× memory.
Second, Bamboo does not use activation checkpointing,2
while Varuna and Oobleck do.

7.2 Throughput Under Controlled Failures
We first evaluate the average throughput of Bamboo, Varuna,
and Oobleck on various failure scenarios. We set the fre-
quency of failures from once every 6 hours (low rate) to once
every 10 minutes (high rate) to cover a wide spectrum of
environments [1, 8, 20, 44, 48]. We monotonically reduce
the number of available nodes without node recovery and
measure average throughput until less than half of the nodes
(15 nodes) remain.

Table 2 shows the average throughput for different fre-
quencies of failures. Oobleck outperforms or matches other
frameworks for every model in every scenario. Due to static
overhead coming from redundant computation, Bamboo’s
throughput, while stable over different failure frequencies, is
consistently low. Also, because they need to hold a large por-
tion of GPU memory for an additional copy of model states
for redundant computation and activations, Bamboo cannot
train large models due to out-of-memory (OOM) errors.
Bamboo’s gap from Varuna was surprising. We believe

that it is due to differences in our evaluation environments.
We use 200Gbps high-performance networking and ample
NVMe storage, while the original evaluation used Ama-
zon EC2 p3.2xlarge and p3.8xlarge instances with up to
10Gbps network and S3 object storage. High storage through-
put in our setup significantly sped up Varuna. Furthermore,
we use different batch configurations for Bamboo and Varuna
2This is because Bamboo’s design choice stems from imbalanced memory
consumption due to different amount of activations across stages. Activation
checkpointing [7] drastically reduces memory consumption by activations
and it conflicts with Bamboo’s design.

so that each can run at maximum resource utilization; in con-
trast, Bamboo’s evaluation used the same configuration for
both, which throttled Varuna’s potential throughput.
Overall, Varuna performs comparably to us when either

the model is small or failures happen infrequently. For larger
models and/or more frequent failures, the higher overhead
of loading and saving checkpoints drastically decrease its
throughput (13.9× for GPT3-6.7B).

7.3 Throughput in Spot Instance Traces
Next, we borrow real traces of node availability changes
of spot instances from the Bamboo repository [46] and use
their tools to replay the trace for 12 hours [48]. Events in
the trace had been gathered from Amazon EC2 P3 spot in-
stances (p3.2xlarge and p3.8xlarge) and Google Cloud
Platform (GCP) a2-highgpu-1g spot instances. Node pre-
emption events happen every 7.7 minutes and 10.3 minutes,
on average, for EC2 and GCP spot instances, respectively.
Unlike experiments earlier where the number of available
nodes monotonically decreases (§7.2), these traces include
node addition events too. The actual experiments took place
in our cluster where we simulated the availability events.
Figure 10 represents throughput changes for some mod-

els. See Appendix C for results from other models; omitted
models are similar to the BERT-Large model. Note that each
data point in lines is an average throughput of a short time
window for visibility. As such, it may not represent 0 through-
put, which happens during reconfiguration or full restart.
BERT-Large, the smallest model, has the least amount of
checkpointing overhead; as such, the performance of Varuna
is similar to Oobleck. However, as models become larger,
even in our high-performance storage setup, Varuna takes
increasingly longer to store and load checkpoints. Also, it
starts suffering from fallbacks because it fails to finish check-
pointing within the preemption grace period, decreasing its
throughput more drastically. For example, for GPT-3 with
6.7 billion parameters, Varuna hung over the entire time
and could not make training progress. Frequent changes in
node availability trigger Varuna’s full reconfiguration more
frequently, wasting resources for saving and loading check-
points which decreases its throughput.

Bamboo cannot run any model larger than GPT-2.
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Figure 10. Throughput changes in spot instances environment, EC2 P3 instances (top) and GCP a2-highgpu-1g instances (bottom), with various
models. Note the different Y-axes scales for different models. Horizontal dotted lines represent average throughput. Bamboo could not run any
GPT-3 models, while Varuna failed for GPT-3 6.7b.

Table 3. Oobleck planning latency (in seconds) with various numbers
of layers and nodes. BERT-Large, GPT-2, and GPT-3 Medium have 24
layers, while GPT-3 2.7b and 6.7b have 32 layers.

# Nodes # GPUs
Per Node

# Layers
24 32 64 96

8
1 0.28 0.71 9.65 68.50
4 0.41 1.15 11.58 74.56
8 0.54 1.50 20.98 109.76

16
1 3.37 7.45 66.35 540.36
4 4.56 10.41 108.10 649.67
8 4.90 11.78 176.04 1,213.63

24
1 11.35 30.11 262.47 1,477.54
4 14.78 45.80 472.53 2,153.84
8 15.59 49.25 520.08 3,297.92

7.4 Ablation Study
7.4.1 Overhead of Oobleck Planning. We run the plan-
ning algorithm (§4) to create a single pipeline template using
various model specifications (number of layers) and node
specifications (number of nodes and GPUs per node) to see
its scalability. Table 3 shows the planning algorithm latency
with various numbers of layers and nodes. Considering the
estimated end-to-end training time of large models using
hundreds of GPUs is ∼100 days [5, 30], the planning over-
head is marginal (< 0.1%). Even if more GPUs are used for
training (i.e., thousands of GPUs), the number of nodes for
each pipeline template does not increase significantly. This
is because Oobleck simply instantiates more of the smaller
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Figure 11. Time occupation breakdown of Bamboo, Varuna, and
Oobleck running BERT-Large and GPT-3 6.7b model.

pipelines and utilizes data parallelism. Also, once a pipeline
template is generated, the creation of subsequent templates
can drastically be accelerated, adding negligible time, thanks
to the usage of memoization and intermediate caches (§4.1.2).
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Table 4. Throughput (samples/s) for Varuna, Varuna with no check-
pointing overhead, and Oobleck running BERT-Large and GPT-3 6.7b.

BERT-Large GPT-3 6.7b

Failure Frequency 6h 1h 10m 6h 1h 10m

Varuna 260.11 246.03 173.52 4.14 2.69 0.26
Varuna (no ckpt) 275.88 273.85 264.16 4.61 4.29 1.98
Oobleck 287.10 286.28 282.11 4.33 4.22 3.55

7.4.2 Throughput Breakdown. Figure 11 shows the im-
pact of each overhead on training throughput. Varuna’s over-
heads include restarting overhead (reinitialization and load-
ing a checkpoint), saving checkpoints, and throughput loss
due to idle GPUs and fallbacks. Bamboo has significant over-
head from redundant computation and reconfiguration over-
head for data copy. Redundant computation in Bamboo is
shown to have more than 50% overhead because it includes
several indirect components that cannot clearly be separated
– for example, pipeline bubble due to an increased number
of pipeline stages to store redundant model states and imbal-
anced pipeline stages for balancing memory. Oobleck only
has a small copying overhead formissing layers after pipeline
reinstantiation.
All the frameworks experience fallback overhead, losing

some training progress due to failures happening in the mid-
dle of iteration. It is more severe in Varuna because it has to
fall back to the last checkpoint, while Bamboo and Oobleck
lose at most one iteration. Varuna suffers significantly from
much such waste occupying up to 75% of wall clock time,
while Oobleck can achieve effective throughput of at least
75% of the no-failure scenario.

7.4.3 Impact of Checkpointing Overhead. Overhead
of fault tolerance in Varuna mostly comes from serialized
checkpointing and full restart. CheckFreq [28] recently intro-
duced checkpointing optimization by pipelining checkpoint-
ing with computation, and it can improve the throughput of
checkpoint-based training. Here, we go further by completely
removing the overhead of checkpointing and analyzing the
impact of failures only. Because of lower checkpointing over-
head, we also increase the frequency of checkpointing from
every 10 iterations to every 2 iterations. We define full restart
overhead as framework initialization plus loading the last
checkpoint overhead. While checkpointing overhead during
training can be hidden by overlapping it with computation,
the overhead of loading a checkpoint cannot be overlapped
with computation; this is because computation cannot begin
until the entire checkpoint is loaded.
Table 4 compares Varuna, Varuna with no checkpoint-

ing overhead, and Oobleck running the BERT-Large model
and GPT-3 6.7b model. Although Varuna could increase its
throughput, it still suffers from up to 60% overhead for the
higher frequency of failures.

8 Related Works

Elastic training.Horovod Elastic [14] and TorchElastic [34]
restart training upon failure and recovery. CoDDL [16] bal-
ances resource efficiency and short job priority in elastic
resource sharing problems. Aryl [21] enables elastic resource
sharing between inference and trainingworkloads. Pollux [35]
considers both resource utilization and statistical efficiency
of training jobs when adaptively allocating resources. These
works are all limited to elastic resource sharing for data-
parallel training of small models that fit within a single GPU.

Distributed training with spot instances. Varuna [1]
uses hybrid parallelism for distributed training with cheaper
spot cloud instances. It reconfigures training when one or
more failures happen. Bamboo [48] introduces redundant
computation (RC) in pipeline parallelism to provide resilience
in the presence of frequent preemptions of training with
spot instances. Oobleckmatches or significantly outperforms
them for a wide range of model sizes and failure frequencies.

Large model training. Numerous proposals in recent years
have attempted to optimize large model training through
diverse mechanisms [11, 15, 22, 29, 30, 33, 37, 38, 42, 45, 47,
56]. However, they do not provide fault tolerance out-of-the-
box and are orthogonal to Oobleck.

9 Conclusion
In this paper, we introduced Oobleck, a resilient distributed
Large model training framework with guaranteed fault tol-
erance. Oobleck co-designs planning and execution for fast
failure recovery and high throughput by introducing pipeline
templates that are carefully designed during planning and
reused during training execution. It achieves efficient failure
recovery by reinstantiating pipeline(s) from the pipeline tem-
plates and copying missing model states from pipeline repli-
caswithout requiring a full restart from checkpoints. Oobleck
outperforms state-of-the-art fault-tolerant distributed train-
ing solutions Bamboo and Varuna by up to 13.9×.
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