
Halfmoon: Log-Optimal Fault-Tolerant
Stateful Serverless Computing

Sheng Qi
Peking University

Xuanzhe Liu
Peking University

Xin Jin
Peking University

Abstract
Serverless computing separates function execution from
state management. Simple retry-based fault tolerance might
corrupt the shared state with duplicate updates. Existing
solutions employ log-based fault tolerance to achieve exactly-
once semantics, where every single read or write to the
external state is associated with a log for deterministic replay.
However, logging is not a free lunch, which introduces consi-
derable overhead to stateful serverless applications.
We present Halfmoon, a serverless runtime system for

fault-tolerant stateful serverless computing. Our key insight
is that it is unnecessary to symmetrically log both reads
and writes. Instead, it suffices to log either reads or writes,
i.e., asymmetrically. We design two logging protocols that
enforce exactly-once semantics while providing log-free
reads and writes, which are suitable for read- and write-
intensive workloads, respectively. We theoretically prove
that the two protocols are log-optimal, i.e., no other protocols
can achieve lower logging overhead than our protocols. We
provide a criterion for choosing the right protocol for a given
workload, and a pauseless switching mechanism to switch
protocols for dynamic workloads. We implement a prototype
of Halfmoon. Experiments show that Halfmoon achieves
20%–40% lower latency and 1.5–4.0× lower logging overhead
than the state-of-the-art solution Boki.

CCS Concepts: • Information systems→ Information
storage systems; • Computer systems organization→
Reliability; Availability.

Keywords: serverless computing, FaaS, logging, exactly-once
semantics

ACM Reference Format:
Sheng Qi, Xuanzhe Liu, and Xin Jin. 2023. Halfmoon: Log-Optimal
Fault-Tolerant Stateful Serverless Computing. In ACM SIGOPS 29th

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
SOSP ’23, October 23–26, 2023, Koblenz, Germany
© 2023 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-0229-7/23/10. . . $15.00
https://doi.org/10.1145/3600006.3613154

Symposium on Operating Systems Principles (SOSP ’23), October 23–
26, 2023, Koblenz, Germany. ACM, New York, NY, USA, 17 pages.
https://doi.org/10.1145/3600006.3613154

1 Introduction

Recent years have seen an increasing popularity of serverless
computing [17, 33, 34, 37, 38, 54, 89, 92, 99, 113] in building
cloud applications [52, 79, 86, 93, 105, 111]. It features the
Function-as-a-Service (FaaS) paradigm [87, 100, 116], where
developers break down an application into a set of functions
and their dependencies, and the cloud automates the deploy-
ment. FaaS enjoys elastic scaling and pay-per-use billing,
which dramatically reduces resource management overhead.

Serverless platforms enable autoscaling by disaggregating
compute and storage [43, 66]. Function-local state is not
guaranteed to persist across invocations due to load balancing
and elastic scaling of resources. To share state across multiple
functions, applications typically rely on external storage for
state management [12].
Extracting the state from stateful serverless functions

(SSFs) [51, 109] brings challenges to application-level consist-
ency in the presence of failures. While SSFs are decomposed
into stateless functions and the external state, achieving
fault tolerance of SSFs is not as simple as achieving fault
tolerance for each component individually. Specifically, the
fault tolerance of stateless functions can be achieved by
retrying crashed functions, and that of the external state
can be achieved by using a fault-tolerant external storage
service. However, naively combining the two introduces
anomalies upon failures. Consider an SSF that writes to the
external state and then crashes. Retrying this function would
duplicate the write that has already been applied.
Serverless runtimes should avoid such anomalies with

exactly-once semantics [88, 109]. That is, no matter how
many times an SSF crashes and gets re-executed, the effect
on the external state should be equivalent to that produced
by running the SSF exactly once, without crashing.

Log-based fault tolerance is a common approach to realiz-
ing exactly-once semantics [25, 88]. The idea is to enhance
the retry-based at-least-once semantics with idempotence,
i.e., at-most-once semantics. To achieve this, existing solutions
associate every read or write to the external state with a
log record. During re-execution, the SSF replays the log,
recovering read results and skipping completed writes. Beldi
proposes to atomically perform writing and logging in the

314

https://doi.org/10.1145/3600006.3613154
https://doi.org/10.1145/3600006.3613154
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3600006.3613154&domain=pdf&date_stamp=2023-10-23

Table 1. Latency of log, read and write operations in Boki.
Log Read Write

median 1.18ms 1.88ms 2.47ms
99%-tile 1.91ms 4.60ms 5.86ms

external storage [109]. The state-of-the-art solution Boki
decouples the log to a more efficient logging layer [51].
However, logging is not a free lunch. Beldi reports that

reads and writes with logging are 2-4× more expensive than
their raw counterparts. Even for Boki’s optimized implement-
ation, logging still accounts for 30%-50% overhead compared
to raw operations (§2). Thus the primary goal of this paper is
to provide idempotence while minimizing logging overhead.
We present Halfmoon, a serverless runtime system for

fault-tolerant SSFs. Halfmoon provides two logging protocols
that enforce exactly-once semantics while providing log-free
reads and writes, respectively. Our intuition is that there is
no need to symmetrically log both reads and writes. Instead,
it suffices to log either reads or writes, i.e., asymmetrically.
Consider the stream of events that take place in the system.
Our key insight is that reads and writes are parameterized by
their timestamps in the stream, and idempotence boils down
to the stability of timestamps [49]. An idempotent write
should always be applied at the same point in the stream, i.e.,
at the same timestamp. Similarly, an idempotent read should
always seek backward from its timestamp and observe the
latest preceding write in the stream.
The key challenge of Halfmoon’s asymmetric design is

persisting events without logging. While a logged event
(and its timestamp) is persistent on its own, an unlogged
event must be recovered from other logged events after
failure. The problem is that the assignment of timestamps
is inherently non-deterministic. Halfmoon addresses this
problem by leveraging the fact that many serverless applicati-
ons do not require real-time consistency [90, 91, 101]. Instead
of assigning the non-recoverable real time to log-free reads
or writes, we generate their timestamps based on those of
previous logged operations, in a deterministic and recoverable
fashion. This allows us to eliminate the logging overhead
for one type of operation, and rely on the log records of the
other type to achieve both persistence and idempotence. We
discuss Halfmoon’s consistency guarantees in § 4.4.
We prove that the two logging protocols are log-optimal

for exactly-once semantics, i.e., no other protocols can achieve
exactly-once semantics with lower worst-case logging overh-
ead than our protocols. Intuitively, the two protocols are
suitable for read- andwrite-intensiveworkloads, respectively.
We provide theoretical and empirical analysis of Halfmoon
under different read/write intensities, and propose a criterion
for choosing the right protocol for a given workload.
Halfmoon also supports dynamic workloads that change

their read/write intensity over time. We design a switching
mechanism that allows the runtime to change between Half-
moon’s log-free read protocol and log-free write protocol.

F2
Write

F2
Read

F2
Crash

F3
Write

F2
Write

F2
Read

F1
Write

timestamp

event

t0 t1 t2 t3 / t1 t2

Figure 1. Parameterizing reads and writes with timestamps.

The switching is pauseless, i.e., the system remains operational
and fault-tolerant during this process.

In summary, we make the following contributions.
• We design two logging protocols that enable exactly-once
log-free reads and writes for SSFs, respectively.

• We theoretically prove that our protocols are log-optimal.
Therefore, Halfmoon pushes the overhead of log-based
fault tolerance to its lower bound.

• We provide a criterion for choosing the right protocol for
a given workload, and a pauseless switching mechanism
to switch protocols for dynamic workloads.

• We implement a prototype of Halfmoon. Our experiments
show that Halfmoon achieves 20%–40% lower latency and
1.5–4.0× lower logging overhead than the state-of-the-art
solution Boki.

2 Motivation
Problem: logging overhead. To achieve exactly-once sem-
antics for SSFs, existing solutions [51, 109] require logging
for both reads and writes to the external state. Note that reads
should be idempotent because writes and the branching of
SSF logic may arbitrarily depend on read results. We refer to
these fault-tolerant logging protocols as symmetric. Boki [51]
is the state-of-the-art symmetric approach that specifically
optimizes its logging implementation. Nevertheless, logging
still incurs substantial overhead. We benchmark Boki’s logg-
ing latency under the setup of §6, using Amazon DynamoDB
as the external storage [35]. Table 1 shows that logging
accounts for 63% (48%) overhead at the median and 42%
(33%) at the 99%-tile for reads (writes). This motivates us
to design minimally fault-tolerant protocols for SSFs that
perform logging only if necessary.

Opportunity: parameterizing reads andwrites.The event
stream is the key enabler of Halfmoon’s design. The ordering
of events in the stream can be obtained through sequencers
[18, 30, 51, 68], synchronized clocks [27, 58, 71], or state
machine replication (SMR) [14, 28, 36, 60]. Without loss
of generality, we assume for now that each operation is
associated with a timestamp and the event stream follows
the timestamp order. We further discuss the availability of
the event stream in §7.

Our key insight is that reads and writes are parameterized
by their timestamps in the event stream. To achieve idempote-
nce, a read should consistently seek backward from the same
timestamp. Figure 1 shows a real-time interleaving of SSFs
and the event timestamps. The first time F2 executes read at
𝑡1, it sees the latest write from F1 at 𝑡0. During re-execution,
instead of seeing F3’s write at 𝑡3, it should also seek backward

315

from 𝑡1 and recover the previous result, i.e., the value written
at 𝑡0. Similarly, for a write to be idempotent, it should always
take effect at the same point in the stream regardless of re-
execution. As shown in Figure 1, when F2 recovers from
failure, it should avoid overwriting F3’s write because F2’s
write has been parameterized at 𝑡2, i.e., it should take effect
before F3’s write.
By parameterizing reads and writes, idempotence boils

down to the stability of read and write timestamps [49].
This motivates us to rethink the necessity of existing logging
protocols. Our intuition is that there is no need to symmetric-
ally log both reads and writes. Instead, by leveraging the
inherent dependencies between events, it suffices to log either
reads or writes, i.e., asymmetrically.

Challenge: persistence without logging. Parameterizing
reads and writes does not provide fault tolerance on its own.
The critical part is to persist the event stream in the first place,
such that timestamps and the ordering of events remain
stable across failures. This property is implicitly satisfied by
symmetric logging protocols, as logged events are persistent
by themselves. However, Halfmoon’s design goal of being
log-free presents a new challenge to persisting the event
stream. For an unlogged event, the only way to persist it
is to make sure that it can be recovered from other logged
events. Consequently, the dependencies of this event must be
deterministic. By requiring that SSFs be deterministic [109],
the input parameters to reads or writes can be stably inferred
from function context. However, the assignment of event
timestamps is inherently non-deterministic, which must be
logged to rule out the uncertainty.

At first glance, this seems to be contradictory to our design
goal. To address this problem, Halfmoon leverages the fact
that many serverless applications function well under less
stringent guarantees than real-time consistency, i.e., lineariza-
bility. For example, Cloudburst [91] provides repeatable reads
or causal consistency for SSFs; AFT [90] provides read atomici-
ty. Therefore, the read/write timestamps do not have to
reflect the real time, which is non-deterministic and unrecov-
erable without logging. Instead, we can deterministically
generate logical timestamps for log-free operations based
on the SSF context, similar to the way we infer the input
parameters for reads or writes. In other words, it is possible
to infer all events from a skeleton of the event stream. Only
the skeleton needs to be persisted, thereby saving the logging
overhead for the rest.

3 Halfmoon Overview
Figure 2 shows the overall architecture of Halfmoon. SSFs
interact with the external state through Halfmoon’s client
library. The library exposes similar APIs as existing solutions
[51, 109], including data operations such as read/write, and
control flow operations such as invoke to enable stateful
workflows. The APIs have the same signature as their raw

Function Node

Read Write Invoke

External State Logging Layer

Raw R/W Log APIs

SSF SSF SSF
Halfmoon-read Protocol

read log
write log ✅

❎

Halfmoon-write Protocol
read log
write log

✅
❎

Halfmoon Library

- seqnum
- tags[…]
- custom fields

tag

increasing seqnum

Figure 2. Halfmoon overview.

counterparts, but automatically performs logging behind
the scene to ensure idempotence. To achieve exactly-once
semantics, Halfmoon relies on the serverless runtime to
detect and re-execute crashed SSFs. This feature is widely
supported among existing platforms [1, 8, 88, 109].

Halfmoon applies log-based fault tolerance with novel log-
optimal protocols. The Halfmoon-read protocol is log-free on
reads, and the Halfmoon-write protocol is log-free on writes.
In line with the state-of-the-art solution Boki [51], Halfmoon
decouples the log from the external state into a separate
logging layer. The logging layer implements the shared log
abstraction [19, 30, 51], which enforces a global total order of
log records and serves as the event stream of Halfmoon. We
note that Halfmoon is not tied to Boki’s logging layer (§7).
Our prototype uses Boki because it specifically optimizes
logging for stateful serverless computing.
Figure 3 lists Halfmoon’s log APIs. logAppend appends

to the log and assigns a monotonically increasing sequence
number (seqnum) to the log record. Each log record has a
number of tags as specified in logAppend. The main log is
logically divided into sub-streams where log records have a
common tag, and a record may appear in several sub-streams.
Because the order of records is determined by their seqnums,
the order within each sub-stream is consistent with that of
the main log. Sub-streams reduce log replay overhead by
enabling selective reads, a common approach in shared log
systems [20, 51, 97]. logReadPrev (logReadNext) seeks
backward (forward) on a sub-stream specified by the tag
parameter. logTrim garbage collects a sub-stream. Besides
the APIs of prior work [51], we introduce logCondAppend
to resolve conflicts between concurrent SSF instances (§5).
Because all logAPIs target specific sub-streams, we abbreviate
sub-streams as streams for the rest of this paper.

4 Halfmoon Design
This section presents the design of the Halfmoon-read and
the Halfmoon-write protocol. We start by clarifying the
concepts and assumptions.

Race conditions. We note that several concurrent function
instances may correspond to the same SSF invocation. For
example, if an instance times out (but is still live) due to a
network error, the runtimemay assume that this instance has

316

Return the sequence number of the log record
def logAppend(tags, record) −> seqnum
Read the previous or next log record
whose seqnum<=`max_seqnum` or >=`min_seqnum`
def logReadPrev(tag, max_seqnum) −> LogRecord
def logReadNext(tag, min_seqnum) −> LogRecord
Delete log records up to `seqnum`
def logTrim(tag, seqnum)
Conditional log append (Section 5.1)
def logCondAppend(tags, record, condTag, condPos)

−> (seqnum, error)

Figure 3. The log APIs in Halfmoon.

crashed and launch another. We use instances specifically
to denote such concurrent functions for a particular SSF
invocation. Without loss of generality, instances should be
assigned a common identifier (tag) so that they may refer to
the same log stream containing the SSF’s execution history.
We use instancesID to denote this common identifier.

Consequently, there are two race conditions against the
exactly-once semantics. First, a re-executed SSF may race
with a previously failed invocation of the same SSF, at the risk
of repeating a completed step. Second, an SSF may also race
with its peer instances, both attempting to execute the same
step. For the sake of presentation, this section focuses on
addressing the first race condition. We extend the protocols
to handle the second one in §5.
Time-related concepts.The logAppendAPI returns amon-
otonically increasing seqnum from the logging layer (Figure 3).
Within each SSF, we use a variable cursorTS to record the
function-local seqnum that advances after each logging oper-
ation. As per §2, timestamp is a general concept that paramete-
rizes the position of the associated event in the event stream.
Note that depending on the logging protocol, timestamps
can be based on seqnums (i.e., logical) or the real time.
Transactions. In line with previous works, we assume that
SSFs are non-transactional by default [51]; to execute several
steps atomically, SSFs should explicitly use transactions.
Halfmoon can reuse existing transactional APIs, and focuses
on optimizing the logging overhead for normal operations.
4.1 Halfmoon-Read: the Log-Free Read Protocol

Overview. Under Halfmoon-Read, all reads are log-free
and only writes perform logging. The persistent part of
the event stream consists only of writes. Writes achieve
idempotence by checking thewrite logs in advance. For reads,
we take two steps to ensure idempotence. First, we assign
timestamps to reads in a deterministic manner. Second, we
use the timestamps to map reads to existing writes in the
write log. In other words, reads are inserted into the event
stream given their timestamps, and are idempotent because
their positions are deterministic.
In step one, we must infer the read timestamps from

the SSF context. Our solution is to use cursorTS, i.e., the
seqnum of the latest logged operation in the SSF; then the

func() {
val = Read(X)
val = val*2
Write(X, val)
val = Read(Y)

}

(init log) acquire t0
seek backward from t0

(write log) advance to t3
seek backward from t3

F1
R(Y)

F1
W(X)

F2
W(Y)

F1
R(X)

F2
W(X)

F1
Init

cursorTS

event
(real-time order)

t0 t1 t0 t2 t3 t3

F1
R(Y)

F1
W(X)

F2
W(Y)

F2
W(X)

F1
R(X)

F1
Init

cursorTS t0 t0 t1 t2 t3 t3

event
(effective order)

Figure 4. Example of the Halfmoon-read protocol. F1 runs the
pseudocode. F2 is another SSF. The top and bottom timeline show
the real-time order and the effective order of events, respectively.
The arrows below the bottom timeline show the dependencies
between operations on object X and Y.

fault tolerance of the logging layer guarantees that read
timestamps are deterministic.

In step two, we must ensure that writes are traceable. Our
solution is to use multi-versioning to manage the external
state. Each write creates a new version of the object and
registers the version number in the logging layer; a read
locates a specific object version by querying the write log
(logReadPrev). Note that the version numbers are unordered
by themselves; the write log defines the order. Therefore
the external storage only needs to support plain key-value
APIs; the version numbers serve as pointers to the actual
object. Because the position of a write in the event stream is
determined by the seqnum of the associated write log record,
the write timestamp is set to that seqnum accordingly.

Example. Figure 4 shows an example of the Halfmoon-read
protocol. F1’s initial cursorTS is 𝑡0. When reading object X, it
does not see F2’s write at 𝑡1 because the read uses an earlier
timestamp. However, when reading object Y, it sees F2’s
write at 𝑡2 because it has advanced its cursorTS to 𝑡3 after
its previous write. The effective order of events follows the
order of the seqnum-based logical timestamps. We show in
§4.4 that Halfmoon-read provides sequential consistency [63].

Init. Figure 5 shows the pseudocode of the Halfmoon-read
protocol. At the start of execution, the SSF appends an init
log record, and uses the seqnum of this record as the initial
cursorTS (line 7). The cursorTS is recovered from the log
record, if present (line 5). The SSF also retrieve all records
from the log stream tagged by its instanceID (line 3), which
contains the execution history of the SSF. We refer to this
per-SSF log stream as the step log. The current records in
the step log are stored in a local array env.stepLogs. Later
the SSF may check this array for existing log records and
skip finished operations.

317

1 def Init(env, input):
2 # retrieve all log records of the SSF
3 env.stepLogs = getStepLogs(env.ID)
4 if env.stepLogs[0] is not None:
5 env.cursorTS = env.stepLogs[0]["seqnum"]
6 else:
7 env.cursorTS = logAppend([env.ID], LogRecord{
8 "step": 0, "op": "init",
9 "data": input,
10 })
11 env.step = 0
12

13 def Write(env, key, value):
14 # check if write can be skipped
15 env.step += 1
16 if env.stepLogs[env.step] is not None:
17 env.cursorTS = env.stepLogs[env.step]["seqnum"]
18 return
19 # deterministically generate version number
20 vNum = getVersionNumber(env)
21 DBWrite(key, value, version=vNum)
22 env.cursorTS = logAppend([env.ID, key], LogRecord{
23 "step": env.step, "op": "write",
24 "version": vNum,
25 })
26

27 def Read(env, key):
28 writeLog = logReadPrev(key, env.cursorTS)
29 return DBRead(key, version=writeLog["version"])
30

31 def Invoke(env, funcName, input):
32 # check if invoke can be skipped
33 env.step += 1
34 if env.stepLogs[env.step] is not None:
35 env.cursorTS = env.stepLogs[env.step]["seqnum"]
36 return env.stepLogs[env.step]["result"]
37 # deterministically generate ID
38 ID = getUUID(env)
39 # ID is passed into callee's env
40 result = InvokeFunc(ID, funcName, input)
41 env.cursorTS = logAppend([env.ID], LogRecord{
42 "step": env.step, "op": "invoke",
43 "result": result,
44 })

Figure 5. Pseudocode of the Halfmoon-read protocol.

Write first obtains a version number (line 20), performs
multi-version DBWrite, and finishes by logging the version
number (line 22). Specifically, Halfmoon-read first checks if
the write log record exists. If so, the write has been applied.
Otherwise, it means that either the write has not yet created
a new version of the object, or it has created the new version
but crashed before logging.
To be idempotent, the write needs to use a deterministic

version number. For example, it can generate the version
number by simply concatenating the unique and deterministic
InstanceID (env.ID) and the current step number (to disting-
uish different operations in the same SSF). Alternatively, if
the version number is to be randomly generated, the SSF
should log and check the version number before DBWrite

to transform it into a deterministic operation. Our current
prototype adopts the latter approach such that Halfmoon-
read logs before and after DBWrite. This is because our
primary baseline, Boki [51], also logs twice for each write.
Our prototype aligns the logging overhead of writes such
that our performance gains come solely from eliminating
the logging of reads.

Read first queries the per-object write log tagged by key. It
passes the cursorTS into logReadPrev to retrieve a particular
write log record. The “version” attribute in the record points
to the actual object the read should see (line 28). To facilitate
this process, we pass two tags into logAppend when logging
the write, namely the instanceID of the SSF (env.ID) and the
key of the target object, such that the record is visible in two
log streams, namely the SSF’s step log and the object’s write
log. Therefore, a write log record serves a dual purpose. First,
it checkpoints the progress of the initiating SSF, allowing
the write to be skipped during re-execution by checking
the step log. Second, it functions as the commit point of
the write where it becomes visible to other SSFs in the
write log. Because the logging layer assigns monotonically
increasing seqnums, a read has full visibility of all writes
with smaller logical timestamps, thereby allowing the read
to seek backward in the event stream deterministically.

The second purpose requires that the logging be performed
after DBWrite, as opposed towrite-ahead logging. The reason
is that the logging layer is decoupled from the external state.
If the version number is made visible in advance, then reads
could obtain version numbers with no matching objects in
the external state. In contrast, Halfmoon-read ensures that
the exposed object versions are always available.
In spite of being log-free, Read still needs to pay one

round of logReadPrev. This overhead is implementation
specific. Because Boki caches log records on function nodes,
logReadPrev takes 0.12ms at the median and 0.72ms at
the 99%-tile [51], which is negligible compared to DBRead
(Table 1). Therefore our prototype of Halfmoon-read provides
near-zero overhead for reads. Note that the critical data of a
write log record consists only of its seqnum and version
number, which can be covered in a few dozen of bytes.
Therefore the cache size is not a concern here. Alternatively,
if the logging layer is merged with the external state, a read
can directly issue a query with a filter on object versions,
instead of retrieving the version and the object separately.

Invoke first generates the callee’s instanceID (line 38), calls
the function, and finishes by logging the result (line 41). In
case the log record already exists, the actual invocation can
be skipped. The callee’s instanceID must be deterministic
to ensure idempotence. Similar to the version numbers in
Write, the SSF can deterministically generate the instanceID
from its context, or randomly generate it and perform additi-
onal logging and checking to turn it into a deterministic
operation. In line with Boki, our prototype adopts the latter

318

approach. Note that by logging the result, the SSF ensures
that the cursorTS is monotonic even across invocations.
Because each individual SSF is idempotent, by induction
the entire workflow is also idempotent.

Remark.Halfmoon-read is primarily designed for key-value
stores with read/write interfaces. To perform table-level
queries, e.g., scan, join, and aggregation, one should first
use logReadPrev to get a list of version numbers for all
objects in the table. This list captures a snapshot of the table
at a given timestamp. It is necessary because the ordering of
individual writes is defined by the write log, and the version
numbers are not ordered by themselves. As an optimization,
it is possible to cache the database index in the logging layer
to reduce the size of the returned list. Alternatively, the table
should be read-only to bypass any logging or version lookup.
Our prototype implementation of Halfmoon-read does not
support queries over mutable tables.

AsHalfmoon-read requiresmulti-versioning, an important
concern is the garbage collection and the storage overhead.
We address this problem in §4.5 and §4.6, respectively.

4.2 Halfmoon-Write: the Log-Free Write Protocol

Overview. The Halfmoon-read protocol is ideal for read-
intensive workloads. We now present the Halfmoon-write
protocol that supports log-free writes. Similar to Halfmoon-
read, the idea is to assign deterministic timestamps to log-
free operations, but with roles reversed. Under Halfmoon-
write, all reads are logged, while writes use the cursorTS.
Because reads directly log the real-time data they have seen
from the external state, they are idempotent on their own.
Moreover, there is no need to use multi-versioning to keep
the history of writes. Instead, writes in Halfmoon-write
perform conditional updates to the single-version external
state. Specifically, a write deterministically generates a vers-
ion number based on the cursorTS, and updates the object
only if the stored version number is smaller. Themonotonicity
of version numbers and the determinism of the cursorTS
ensures that a write is always applied at the same point in
the event stream, thereby achieving idempotence.

For writes, version numbers serve as their logical timesta-
mps. Read timestamps, in contrast, are based on real time
because reads always target the latest data. Note that the read
timestamp is implicit and unknown to Halfmoon; SSFs have
no need to explicitly parameterize reads with timestamps
given the already materialized read log records. We define
the read timestamps only to help understand the ordering of
events in Halfmoon-write.

Example. Figure 6 shows an example of the Halfmoon-write
protocol. F1 initializes its cursorTS to 𝑡0, and issues Write(X)
using 𝑡0 as the version number. At this point, F2 has already
applied Write(X) with version number 𝑡1. Consequently, F1
does not overwrite F2’s Write(X) because its version number
is smaller. The effect on the external state is equivalent to

func(input) {
Write(X, input.x)
val = Read(Y)
val = val*2
Write(Z, val)

}

(init log) acquire t0
applied at t0
(read log) advance to t2

applied at t2

F1
W(Z)

F2
W(Z)

F1
R(Y)

F1
W(X)

F2
W(X)

F2
R(Y)

F1
Init

cursorTS

event
(real-time order)

t0 t1 t1 t0 t2 t1

F1
W(Z)

F2
W(Z)

F1
R(Y)

F2
W(X)

F1
W(X)

F2
R(Y)

F1
Init

cursorTS

t2

t0 t1 t0 t1 t2 t1 t2— — — —
event

(effective order)

Figure 6. Example of the Halfmoon-write protocol. F1 runs the
pseudocode. F2 is another SSF. The top and bottom timeline show
the real-time order and the effective order of events, respectively.
The arrows below the bottom timeline show the dependencies
between operations on object X and Z.

a virtual interleaving where F1’s Write(X) does “happen”
before F2’s Write(X), which adheres to the definition of
exactly-once semantics. In contrast, F1’s later Write(Z) over-
writes F2’s Write(Z), in accordance with the real-time order.
This is because F1 has advanced its cursorTS to 𝑡2 after
reading the latest value of Y.
Note that there is a major difference between Halfmoon-

read and Halfmoon-write in terms of the ordering of events.
In Halfmoon-read, the effective order of events follows the
order of logical timestamps. In Halfmoon-write, logical times-
tamps (version numbers) are only relevant for writes, while
reads are based on real time1. Consequently, the effective
order under Halfmoon-write combines the real-time and
logical-timestamp order. We derive this order through the
following steps. First, we order all events by real time. Second,
for write events only, we reorder them according to their
version numbers (§4.4).

For example, Figure 6 underlines the version numbers of
writes. F1’s Write(X) with version 𝑡0 is ordered immediately
before F2’s Write(X) with 𝑡1, but still after F2’s Read(Y).
Formally, we show in §4.4 that the ordering under Halfmoon-
write enforces a sequential history for each SSF except that
consecutive log-free writes to different objects may commute.
For now, we give an intuitive interpretation of Halfmoon-
write’s reordering ofwrites. Because the cursorTS is refreshed
after logging each read, a higher cursorTS implies that the
SSF has seen “fresher” data, which in turn gives a higher
priority to the SSF’s writes. In Figure 6, F1’s Write(X) is
reordered because F2 has seen a fresher value of Y. F1’s later
Write(Z) is not reordered because F1 is at least as fresh as F2.

1Realtime-ness applies to failure-free reads. Since exactly-once semantics
ensures that operations appear exactly once in the event stream, regardless
of failure and re-execution, we consider only the failure-free case when
discussing the ordering of events.

319

1 def Write(env, key, value):
2 env.consecutiveW += 1
3 vNum = (env.cursorTS, env.consecutiveW)
4 DBWrite(key, cond="VERSION < {vNum}",
5 update="VALUE={value}; VERSION={vNum}")
6

7 def Read(env, key):
8 env.step += 1
9 env.consecutiveW = 0
10 if env.stepLogs[env.step] is not None:
11 env.cursorTS = env.stepLogs[env.step]["seqnum"]
12 return env.stepLogs[env.step]["data"]
13 value = DBRead(key)
14 env.cursorTS = logAppend([env.ID], LogRecord{
15 "step": env.step, "op": "read",
16 "data": value,
17 })
18 return value

Figure 7. Pseudocode of the Halfmoon-write protocol.

Figure 7 shows the pseudocode of the Halfmoon-write
protocol. It reuses the Init and Invoke functions from the
Halfmoon-read protocol and differs only in Read and Write.

Write performs conditional update by comparing the version
numbers. It is applied to the object only if the stored version
number is smaller (line 4) [51]. The version number is structu-
red as a tuple (line 3). The first field is the cursorTS; the
second is a counter that records the number of consecutive
writes. For simplicity, we omit the counter in Figure 6. The
counter is incremented upon writes and reset upon reads.
The purpose of the second field is to break ties between
consecutive writes to the same object. A version number V1
is smaller than V2 if V1’s cursorTS is smaller, or if they have
equal cursorTS but V1’s counter is smaller.

Read first recovers the previous result from the step log if
possible. Otherwise, it reads the current object and logs the
result. The cursorTS is updated accordingly. CursorTS is only
relevant to subsequent log-free writes. Reads always see the
latest state regardless of the cursorTS. Note that there is no
per-object read log in Halfmoon-write, as opposed to the
write log in Halfmoon-read. This is because read log records
are only checked by the initiating SSF, so there is no need to
tag them with the object’s key to make them publicly visible.
Halfmoon-write only maintains the per-SSF step logs.

4.3 Log Optimality

Given the two logging protocols that enable log-free exactly-
once reads or writes, it is worth exploring whether there
is still room for further optimization. We now prove that
our protocols are log-optimal, i.e., no other log-based fault-
tolerant protocol can achieve lower worst-case logging over-
head than our protocols.We start by formalizing the concepts
and assumptions. For simplicity, we focus on accessing a
single object in this section.

Definition 4.1. Write. Let 𝑆 be the set of valid states. A write
operation is a function𝑤 : 𝑆 → 𝑆 that transforms the current
state 𝑠 to a new state𝑤 (𝑠).
Definition 4.2. Read. A read is a function 𝑟 : 𝑆 → 𝑉 that
maps the current state 𝑠 to a value 𝑟 (𝑠) ∈ 𝑉 . A read is logged
if there is a fault-tolerant record containing the read result.

Without loss of generality, writes transform the current
state while reads interpret it. Note that a read may not be
defined over some states. For example, in Halfmoon-read,
a read with cursorTS 𝑡 is only valid if the latest seqnum in
the logging layer is larger than 𝑡 . A correct protocol must
ensure at any time that any read allowed by the protocol is
defined over the state at that time.

Next, we clarify the concept of logged and log-free writes.
A write is logged if it is associated with a standalone record in
fault-tolerant storage. Moreover, the record is either created
by the write itself, e.g., in write-ahead logging, or it should
be publicly visible, e.g. in Halfmoon-read. If there is no such
record, the write is defined to be log-free. Consequently, in
case a read is logged, we assume that the log record is private
to the SSF; otherwise, it would be equivalent to associating
a publicly visible log record with the write that created the
object, so this write is also considered logged. Formally, we
have the following assumption for log-free writes.

Assumption 4.3. Log-free writes are memoryless. Let𝑤
be a log-free write over state 𝑠1 with visible external effect.
Then there exist 𝑠2 ∈ 𝑆 and read 𝑟 s.t. 𝑤 (𝑠1) = 𝑤 (𝑠2) and
𝑟 (𝑠1) ≠ 𝑟 (𝑠2).

Intuitively, a log-free write directly overwrites the object. It
does not create a standalone record such that the old state is
lost after the write. Consequently, there are multiple distinct
old states that end with the same new state after the write.
One cannot determine the actual old state from the new state
alone. Note that the existence of 𝑟 and 𝑠2 entails that 𝑟 is
defined over both 𝑠1 and 𝑠2 and thus allowed by the protocol.
Moreover, because 𝑟 (𝑠1) ≠ 𝑟 (𝑠2), at least one of them is not
equal to 𝑟 (𝑤 (𝑠1)), the read result over the current state. This
implies that the write has visible external effects.

Assumption 4.4. The SSF logic, i.e., how subsequent operations
depend on a preceding event, is unknown to other SSFs.

Assumption 4.4 implies that SSFs are not aware of operations
from other SSFs ahead of time. Therefore, there can be arbitrary
interleaving of reads and writes.
Based on the definitions and assumptions, we have the

following lemma that captures the relationship between the
logging of reads and writes.

Lemma 4.5. If a fault-tolerant logging protocol allows an
object to be updated with log-free writes (i.e., with visible
external effect), then the protocol cannot be log-free on reads.

Proof. We prove by contradiction. We construct a counter-
example that violates the idempotence of reads. Suppose an

320

SSF performs a log-free read 𝑟 over external state 𝑠1 and then
crashes. During the crash failure, 𝑠1 is modified by a log-
free write𝑤 . When the SSF re-executes the read, it cannot
always recover the previous result based on the modified
state. This is because given Assumption 4.3, we can choose 𝑠2
and 𝑟 s.t. 𝑤 (𝑠1) = 𝑤 (𝑠2) and 𝑟 (𝑠1) ≠ 𝑟 (𝑠2). Moreover, given
Assumption 4.4, the chosen 𝑠2 and 𝑟 in the counter example is
always possible to happen. Consequently, it is impossible for
the read to choose between 𝑟 (𝑠1) and 𝑟 (𝑠2) as the previous
read result, violating idempotence. □

Theorem 4.6. In the worst case, a fault-tolerant logging
protocol either logs all reads or all writes with visible external
effects.

Remark. We can immediately derive Theorem 4.6 from
Lemma 4.5. If there are writes that are log-free and have
visible external effects, then in the worst case, every readmay
be interleaved with log-free writes in a similar fashion as the
counterexample in Lemma 4.5. Note that by Assumption 4.4,
the worst case is always possible to happen. Therefore all
reads should be logged. If there are no such writes, then by
definition all writes with visible external effects are logged.

We only consider writes with visible external effects beca-
use a protocol may skip logging some writes by making
sure that none can read them. For example, a protocol may
handle log-free writes like Halfmoon-write do, occasionally
take a snapshot of the object, and serve all reads using the
snapshots like Halfmoon-read do. This implies that only the
writes captured by the snapshots are visible and logged; the
rest are effectively stateless operations with no visible effects.
We also note that the concept of logging in Lemma 4.5

and Theorem 4.6 is a general abstraction for installing a
standalone record in fault-tolerant storage, independent of
implementation. The actual cost of logging, however, is
implementation-specific. For example, the write logging in
Halfmoon-read can be overlapped with execution, or merged
with DBWrite if the external state exposes its internal logging
and ordering of events. Nonetheless, all writes in Halfmoon-
read are considered logged because they are all associated
with persistent objects in the multi-version external storage
at the least. In contrast, even if an SSF performs logging in
Init under Halfmoon-read and then issues a log-free read,
the preceding logging operation is not considered part of
the read because the Init call is not even aware of such an
operation. As we show in § 4.4, the logging in Init serves
to bring the cursorTS up-to-date, and is not necessary for
idempotence. The initial cursorTS is only required to be
deterministic, which can be inherited from the parent SSF,
or if there is no such SSF, be arbitrarily out-of-date.

Halfmoon measures the logging overhead as the number
of abstract logging operations. Given any particular impleme-
ntation, a fault-tolerant logging protocol either logs more
reads thanHalfmoon-read or logsmorewrites thanHalfmoon-
write in the worst case. Therefore our protocols identify two

F1
Init

F2
Init

F2
W(X)

F2
R(Y)

F1
W(Y)

F1
W(X)

timestamp

event
(real-time order)

t0 t1 t1 t2 t0 t0

F1
Init

F2
Init

F1
W(X)

F2
W(X)

F2
R(Y)

F1
W(Y)

timestamp t0 t1 t0 t1 t2 t0

event
(effective order)

(a) Example of the ordering of events under Halfmoon-write.

Y

X
real time

F1
W(X)

F1
W(Y)

F2
R(Y)

F2
W(X)

!

"

#

$

(b) Enforcing program order among consecutive writes
creates a dependency cycle in the example. Red edges (1 3)
represent the program order; blue edges (2 4) represent the
data dependencies. Note that the direction of edges indicates
precedence, unlike the other figures in this paper.

Figure 8. Example of Halfmoon-write where consecutive log-free
writes to different objects may commute.

minimums in the design space. The actual choice between
them depends on the implementation and the workload. We
present an analysis in §4.6 to quantify this decision.
4.4 Consistency

The primary goal of this paper is to explore the minimal
logging overhead required for idempotence. In doing so,
Halfmoon relaxes the real-time guarantees of linearizabil-
ity [46] such that events can be persisted without logging.
Specifically, Halfmoon-read provides sequential consistency
(SC), which guarantees that events are totally ordered, and
the order adheres to the program order of each process in the
system. The ordering under Halfmoon-write is semantically
equivalent to SC as long as consecutive writes to different
objects can commute. Formally, we have the following propo-
sitions. We include formal proofs and TLA+ verification in
our technical report [6].

Proposition 4.7. Halfmoon-read orders events according to
their logical timestamps. This ordering provides sequential
consistency.

Proposition 4.8. Halfmoon-write orders events through the
following steps. First, all events are ordered by real time. Second,
write events are reordered according to their version numbers.
Specifically, a write is not reordered if it succeeds in conditional
update (§ 4.2); otherwrise, it is placed immediately before the
next successful write to the same object with a higher version.
This total ordering enforces a sequential history for each SSF
except that consecutive log-free writes to different objects, i.e.,
those between two logged events, may commute.

Example. Figure 8a presents an example to illustrate the
total ordering under Halfmoon-write. For simplicity, we
consider only the cursorTS instead of the entire tuple for

321

version numbers. F2’s Write(X) with version 𝑡1 and F1’s
Write(Y) with version 𝑡0 succeed in conditional update and
are not reordered. F1’s Write(X) with version 𝑡0, however, is
reordered before F2’s Write(X). Consequently, the program
order of F1 is changed suchWrite(X) happens beforeWrite(Y).
However, although F1’s Write(X) is reordered, it will never
go past the preceding logged operation (Init in this case).

Ordering of consecutive writes. The example shows that
Halfmoon-write may only change the program order of
consecutive log-freewrites to different objects. Consequently,
the ordering of Halfmoon-write is exactly the same as SC
when SSFs do not perform consecutive writes to different
objects, and is semantically equivalent to SC when such
writes can commute. In case the ordering of consecutive
writes must be preserved, one can perform extra logging
between the writes such that every dependent pair cannot
be reordered. The best practice under Halfmoon-write is to
make dependencies explicit through invocation or trigger
edges in the SSF workflow, and utilize the logging in the
init step of each SSF to prevent reordering. We observe this
design pattern in a variety of workloads [3, 4, 10, 11, 31,
51, 109]. We also provide an extension of Halfmoon-write
in our technical report [6] that preserves the ordering of
consecutive writes. The extended protocol is log-free on
writes in the best case.

Remark. One might wonder why the two protocols are dual
to each other in terms of design but differ in the ordering of
events. The reason is that writes have external effects while
reads do not. Therefore, there is more freedom in placing log-
free reads in the event stream than placing log-free writes.
For a log-free read under Halfmoon-read, no matter when
in real time the read is actually performed, we can always
safely insert it in the event stream based on its assigned
logical timestamp. In contrast, under Halfmoon-write, the
placement of a log-free write not only depends on its version
number (logical timestamp), but also on the real-time state of
the object. If the conditional update succeeds, then the write
must be placed precisely at this point in real time, since it
would be immediately visible to reads after that point. This
additional constraint leads to the permutation of program
order in Figure 8.

Moreover, by advancing the cursorTS in Init, our protocols
enforce a rea-ltime property at the boundary of SSFs: if
an operation finishes at 𝑡 in real time, then all SSFs that
starts after 𝑡 are guaranteed to see the external effects of
that operation. This property is well suited for a variety
of serverless applications that use event triggers to invoke
downstream tasks [5, 7, 9]. Optionally, an SSF can perform
linearizable reads/writes by explicitly advancing the cursorTS
beforehand. Similar to Init, the SSF appends a special sync
log to acquire the up-to-date seqnum in the system.Halfmoon
offers the flexibility for users to enforce linearizability if

necessary, or achieve minimal logging overhead when our
consistency guarantees suffice.

4.5 Garbage Collection

In linewith previouswork [51, 109], Halfmoon uses a garbage
collector (GC) function to remove the log records of finished
SSFs. The GC is periodically invoked by the runtime. For
Halfmoon-write, the lifetime of a read log record is equal to
that of the initiating SSF. For Halfmoon-read, the GC should
delete both the write log records and the matching object
versions in the external state. Because a write log record has
a dual purpose (§4.1), its lifetime should be the maximum of
the SSF’s and the object version’s lifetime. Finally, the object
version should outlive all SSFs that might read it.

Consequently, to garbage collect an object version whose
matching write log record has seqnum 𝑡 , the GC must wait
until the following conditions aremet: (a) there exists another
record in the object’s write log with seqnum 𝑡 ′ > 𝑡 , and (b)
all SSFs that starts before 𝑡 ′, i.e., with initial cursorTS less
than 𝑡 ′, finishes. Condition (b) entails the completion of the
initiating SSF, so (a) and (b) also apply to garbage collecting
the write log. Both conditions can be checked during the GC
scan [51, 109]. Specifically, the GC tracks the latest seqnum 𝑡

that satisfies (b). Upon advancing 𝑡 , for each per-object write
log, the GC marks the latest log record whose seqnum falls
below the new 𝑡 . These records point to the earliest object
versions thatmight still be observed by current or future SSFs.
Therefore, for each per-object write log, it deletes all records
preceding the marked records, as well as the corresponding
object versions in the external state.

4.6 Choosing the Right Protocol

So far, the protocols apply to accessing the entire external
state. However, it is possible to use independent protocols
per object. This is because the two protocols differ only in
the handling of reads and writes, and both can reuse the
cursorTS of the SSF. We therefore focus on choosing the
protocol for a single object.
Qualitatively, we should use the Halfmoon-read/write

protocol for read/write-intensive workloads, respectively.
For simplicity, we consider only read and write operations.
We now quantify the decision. Let 𝑃𝑟 , 𝑃𝑤 as the probability
that an SSF reads and writes the object, respectively. Let _
be the average arrival rate of SSFs. Then we can express the
read/write intensity by multiplying 𝑃𝑟 or 𝑃𝑤 with _.

Storage overhead. Let 𝑡 be the average function lifetime
(including re-execution in case of failures). The lifetime
analysis in §4.5 assumes that GC is performed as soon as
possible. To account for the periodicity of GC, we define 𝑇𝑔𝑐
as the average delay between the completion of an SSF and
the next GC scan.

We start by deriving the storage overhead for Halfmoon-
write, which consists of the read log records and a single
version of the object. Let 𝑁𝑟 be the average number of read

322

log records across time. By Little’s Law [72], 𝑁𝑟 equals the
effective arrival rate of reads, which is 𝑃𝑟_, times the average
lifetime of read log records. We therefore have 𝑁𝑟 = 𝑃𝑟_(𝑡 +
𝑇𝑔𝑐), and the time-averaged storage overhead 𝑆𝑟𝑒𝑎𝑑 is

𝑆𝑟𝑒𝑎𝑑 = 𝑆𝑣𝑎𝑙 + 𝑁𝑟 (𝑆𝑚𝑒𝑡𝑎 + 𝑆𝑣𝑎𝑙) (1)
= 𝑆𝑣𝑎𝑙 + 𝑃𝑟_(𝑡 +𝑇𝑔𝑐) (𝑆𝑚𝑒𝑡𝑎 + 𝑆𝑣𝑎𝑙) (2)

where 𝑆𝑚𝑒𝑡𝑎 and 𝑆𝑣𝑎𝑙 denote the metadata size of a read log
record and the object size, respectively. The full size of a read
log record is 𝑆𝑣𝑎𝑙 + 𝑆𝑚𝑒𝑡𝑎 .
For Halfmoon-read, the storage overhead consists of the

write log and several versions of the object. Let 𝑁𝑤 be the
average number of write log records across time, which is
also the average number of object versions. Let 𝑇𝑤 be the
average time gap between two consecutive writes to the
object. According to §4.5, the average lifetime of a write log
record and the corresponding object version is𝑇𝑤 + 𝑡 , where
𝑇𝑤 enforces condition (a), and 𝑡 enforces (b). Considering𝑇𝑔𝑐 ,
we have 𝑁𝑤 = 𝑃𝑤_(𝑇𝑤 + 𝑡 +𝑇𝑔𝑐). Assuming a Poisson arrival
of SSFs [65], we have 𝑇𝑤 = 1/(𝑃𝑤_). The average storage
overhead 𝑆𝑤𝑟𝑖𝑡𝑒 is

𝑆𝑤𝑟𝑖𝑡𝑒 = 𝑁𝑤 (2𝑆𝑚𝑒𝑡𝑎 + 𝑆𝑣𝑎𝑙) (3)
= (1 + 𝑃𝑤_(𝑡 +𝑇𝑔𝑐)) (2𝑆𝑚𝑒𝑡𝑎 + 𝑆𝑣𝑎𝑙) (4)

Equation 3 assumes that the size of a write log is equal to
𝑆𝑚𝑒𝑡𝑎 . Note that there is a coefficient of two because our
prototype of Halfmoon-read also logs before each write to
align the write logging overhead with Boki (§ 4.1). We further
assume that 𝑆𝑚𝑒𝑡𝑎 is negligible compared to 𝑆𝑣𝑎𝑙 . Dividing
both 𝑆𝑟𝑒𝑎𝑑 and 𝑆𝑤𝑟𝑖𝑡𝑒 with 𝑆𝑣𝑎𝑙 , we derive the boundary
condition as 𝑃𝑟 = 𝑃𝑤 . A higher read intensity means that
Halfmoon-read has lower storage overhead, and vice versa.

Runtime overhead. Let 𝐶𝑤 be the extra cost of a write in
Halfmoon-read compared to that of Halfmoon-write. Simil-
arly, let 𝐶𝑟 be the extra cost of a read in Halfmoon-write
over Halfmoon-read. The extra cost takes all relevant factors
into account, including logging and multi-versioning. In a
given time period 𝑇 , the expected numbers of reads and
writes to the object are 𝑃𝑟_𝑇 and 𝑃𝑤_𝑇 , respectively. Then
the expected extra costs of the two protocols are 𝑃𝑤_𝑇𝐶𝑤

and 𝑃𝑟_𝑇𝐶𝑟 in total, respectively. For our system prototype,
we have 𝐶𝑤 ≈ 2𝐶𝑟 , where the coefficient of two is due to
the same reason as that of Equation 3 (aligning our write
logging overhead with Boki). The boundary condition is then
𝑃𝑟 = 2𝑃𝑤 . A higher read intensity means that Halfmoon-read
has lower runtime overhead, and vice versa.

Remark. Note that the runtime analysis assumes that all
SSFs have equal importance. To differentiate between SSFs,
we can analyze the read andwrite activity of each SSF respect-
ively, finally taking a weighted sum. We can also combine
the runtime overhead with the storage overhead by taking
another weighted sum, e.g., by their monetary cost, to facilit-
ate the final decision.

4.7 Switching between Protocols

The intensity of read and write, namely 𝑃𝑟 and 𝑃𝑤 , may
change over time for a particular object.We therefore present
a switching mechanism between the two protocols. There
are three major requirements. First, the switching must not
violate Theorem 4.6. Second, SSFsmust not be blocked during
the switching. Third, the switching must be fault-tolerant,
i.e., SSFs must consistently use the same protocol for each
step during re-execution.

To satisfy the above requirements, wemaintain a transition
log to record the switching history. It is necessary because
there can be an arbitrary delay between SSF failure and re-
execution, possibly spanning several switching events. The
runtime starts the switching by appending a “BEGIN” record
to the transition log. It also scans the init log records (§4.1) to
find all running SSFs that start before the switching. When
all of these SSFs finish, the runtime completes the switching
by appending an “END” record.
We now describe the switching from the perspective of

an SSF. The first time an SSF reads or writes an object, it
queries the transition log to determine which protocol to
use, and consistently uses the same protocol for that object
in subsequent operations. Specifically, it calls logReadPrev
to retrieve a transition log record, using the initial cursorTS
acquired in Init. This ensures that the switching is fault-
tolerant, since both the cursorTS and the transition log are
persistent. If the log record is “END”, the SSF should use the
target protocol specified in the record as normal. However, if
the record is “BEGIN”, the SSF should use a special transitional
protocol that logs all reads and writes. It cannot use the new
protocol immediately; otherwise, SSFs using the old protocol
will run concurrently with those using the new, violating
Theorem 4.6. Once all SSFs using the old protocol finish, the
runtime can safely switch to the new protocol.

5 Implementation
We implement the Halfmoon prototype on top of Boki. We
modify 2300 lines of C++ in the logging layer. Halfmoon’s
client library consists of 1700 lines of Go.

5.1 Resolving Conflicts Among Peer Instances

Wediscuss in §4 that there are two race conditions against the
exactly-once semantics. We handle the first one in §4.1–4.2.
To address the second one (the race between peer instances),
We introduce logCondAppend (Figure 3). Compared with
logAppend, it takes two additional parameters. condTag is
the caller SSF’s instanceID (env.ID); the log stream correspo-
nding to this tag contains the log records created by the
SSF. condPos is the current step number. logCondAppend
first tries to append to the log normally as logAppend does.
It then checks the offset of the log record in the caller’s
log stream specified by condTag. The conditional append
succeeds if the offset is equal to condPos, i.e., the step number
is as expected and the log record appears in the right position

323

F2
Read

F2
InitBEGINF1

Write
F1
Init

timestamp

event
(real-time order)

t0 t0 t1 t2 t3

F3
Read

F3
InitENDF1

Read
F2
Write

timestamp

event
(real-time order)

t4 t5 t6 t7 t7

!

" #

$

%

% Halfmoon-write	→ Transitional $ Transitional	→ Halfmoon-read

Figure 9. Example of the switching procedure.

in the SSF’s execution history. Otherwise, it undoes the log
append and returns the seqnum of the log record at the
expected offset, along with an error message.

logCondAppend is similar to the compare-and-swap oper-
ation in concurrent programming. It resolves conflicts in
place to ensure that only a single instance succeeds in logging
a certain operation. For symmetric protocols, logging and
conflict resolution can be performed separately. For example,
Boki immediately reads the caller’s stream after appending
to the log, and only honors the first log record of the current
operation. This approach is practical because the sole purpose
of logging in symmetric protocols is checkpointing SSF prog-
ress. Therefore the caller’s log stream is visible to the peer
instances but not to other SSFs. Conflict resolution, though
as a separate step, naturally serves as a synchronization
point among peers, i.e., it ensures that all instances have
identical states after this step. However, Halfmoon’s use of
the write log (Figure 5), presents a new synchronization
problem. Because the write log records also appear in the
object’s log stream specified by the key tag, they are visible
to other SSFs as well. Suppose we resolve conflicts separately,
then a concurrent log-free read might see an inconsistent
state of the object’s stream. In contrast, logCondAppend
greatly simplifies the reasoning about concurrent instances.
We extend the implementation in §4 to handle the race

condition among peers by simply replacing all logAppend
with logCondAppend. If the conditional append fails, we let
developers decide how to handle the error. For example, the
SSF instance can use the returned seqnum to read the log
records at the expected offset, and proceed with an identical
state as its peers. Alternatively, it can quit the race by exiting.

5.2 Switching Between Protocols

To implement the switching procedure, we need to support
both single- and multi-versioning in the external state. Our
solution is to treat single-versioning as a special case of multi-
versioning. The former corresponds to a special LATEST
version (managed by Halfmoon-write) among other versions
(managed by Halfmoon-read). As per §4.1, multi-versioning
can be implemented over plain key-value APIs where each
version is represented by a separate key. Therefore the two
versioning schemas can be seamlessly integrated. There is

Raw Boki HM-R. HM-W.
0

2

4

6

8

La
te

nc
y

(m
s)

Raw Boki HM-R. HM-W.
0

2

4

6

8

10

(a) Read. (b) Write.
Figure 10. Latency of read and write. Halfmoon-read/write is
abbreviated as HM-R/W. Main bars and error bars show median
and 99%-tile tail latency, respectively.

no intersection between them except during the switching.
Figure 9 shows an example where the runtime switches from
Halfmoon-write to Halfmoon-read. F1 (Halfmoon-write) and
F3 (Halfmoon-read) perform single- and multi-version reads
and writes, respectively. The handling of F2 is more complic-
ated. F2’s write should be visible to both F1 and F3 (4
and 5), so it has to modify the LATEST version as well
as create a separate version. F2’s read should target both
the LATEST version using Halfmoon-write (2) as well as
some other version using Halfmoon-read (not shown in the
figure), because its lifetime may overlap with both F1 and
F3. F2 should compare the freshness of the data returned
by the two protocols, namely the “version” attribute of the
LATEST object version, and the seqnum of the write log
record matching the other version. The fresher one is chosen
as the read result and logged for idempotence.

6 Evaluation
This section compares Halfmoon’s performance with the
state-of-the-art solution Boki [51], using microbenchmarks
(§6.1) and realistic applications (§6.2). We also include an
unsafe baseline with no logging. It does not offer exactly-
once semantics and serves as the lower bound of Halfmoon.
We evaluate Halfmoon’s storage and runtime overhead under
different read/write intensity in §6.3, and explores the switch-
ing delay between Halfmoon’s protocols in §6.4.

Experimental setup.We conduct all our experiments on
AWSEC2 c5d.2xlarge instances using the configuration repor-
ted in Boki [51]. Each instance has 8 vCPUs, 16GiB of DRAM,
and 200GiB NVMe SSD. The runtime infrastructure consists
of eight function nodes and one function gateway; the logging
layer consists of three storage nodes and one sequencer node.
Both Boki and Halfmoon use Amazon DynamoDB [35] as
the external storage.

6.1 Microbenchmarks

We measure the median and 99%-tile tail latency of reads
and writes over a period of 10 minutes. In line with previous
works [51, 109], we use a synthetic SSF that issues one
read and write per request. We populate the external state
with 10K objects, each consisting of 8B key and 256B value.

324

100 200 300 400 500 600 700 800 900

20

25

30

35

40

45

M
ed

ia
n
la
te
nc

y
(m

s)

50 100 150 200 250 300 350 400 450

10

15

20

25

100 200 300 400 500 600 700 800 900

10

14

18

22

100 200 300 400 500 600 700 800 900
Throughput (requests/s)

30

40

50

60

70

99
%

la
te
nc

y
(m

s)

50 100 150 200 250 300 350 400 450
Throughput (requests/s)

30

40

50

100 200 300 400 500 600 700 800 900
Throughput (requests/s)

20

25

30

35

40

45

Boki Halfmoon-write Halfmoon-read Unsafe

1(a) Travel reservation. (b) Movie Review. (c) Retwis.
Figure 11. End-to-end performance of Boki and Halfmoon under three application workloads.

Figure 10 shows the results. Compared to Boki, Halfmoon-
read offers ∼30% lower latency on reads and achieves similar
performance on writes (as per § 4.1, we deliberately align
Halfmoon-read’s write logging overhead with Boki). It offers
exactly-once reads with only ∼15% overhead over unsafe
raw reads, which is 4–5× lower than Boki. Halfmoon-write
also achieves ∼30% lower latency than Boki on writes, and
has similar performance on reads. The latency of log-free
writes is still higher than raw writes, because Halfmoon-
write performs conditional updates (§4.2), which is more
expensive than directly updating the object. However, the
overhead is still 2–6× lower than Boki, of which writes are
also conditional and require logging.

6.2 End-to-End Application Workloads

We evaluate Halfmoon over three realistic application workl-
oads. The first two workloads, travel reservation and movie
review, are adapted from DeathStarBench [3, 41] and are
commonly used in Boki and Beldi. Travel reservation runs a
workflow of 10 SSFs. Users search for nearby hotels based
on distance and ratings, and then make reservations. This
workload is read-intensive. Movie review runs a workflow of
13 SSFs. It is slightly skewed towards writes as posting user
reviews makes up its core functionality. The third workload
is Retwis, a simplified Twitter clone [13]. Retwis consists of
several Twitter functions (e.g., post tweet, get timeline) that
perform PUTs and GETs on a key-value store. This workload
is also read-intensive. All three workloads store application
data in DynamoDB. We evaluate both Halfmoon-read and
Halfmoon-write to demonstrate the benefits of using the
appropriate protocol, as well as the worst-case performance
penalties when using the wrong protocol.

Figure 11 shows the results. Using the appropriate protocol,
Halfmoon offers 20%-40% lower median latency for the three
workloads, and achieves 1.5–4.0× lower overhead above

the unsafe baseline. Logging is typically not the bottleneck
of Boki, so it saturates at approximately the same load as
Halfmoon. Halfmoon-read outperforms Halfmoon-write in
read-intensive workloads (Figure 11a and 11c), and otherwise
in write-intensive workload (Figure 11b). Halfmoon outperf-
orms Boki even under the wrong protocol, because Boki
either logs more reads than Halfmoon-read or logs more
writes than Halfmoon-write.

6.3 System Overhead

We use a synthetic SSF to validate the overhead analysis in
§4.6. The SSF issues 10 operations to the database. We vary
the read and write intensity of the workload by changing
the ratio of reads among the operations. We populate 10K
objects in the database. Each operation in the SSF targets
a random object, such that the read ratio is representative
of the read intensity over each object. We compare the two
protocols to determine the boundary condition when they
have equal overhead. For reference, we also measure the
overhead of Boki.

Storage overhead. We measure the time-average storage
usage over a period of 10 minutes. The overall usage consists
of log and database storage. Halfmoon-write stores a single
version of each object, while Halfmoon-read stores multiple
versions. We vary the size of each object and the GC interval.
Figure 12 shows the results. §4.6 predicts that the boundary
condition is when the read and write intensity are equal,
i.e., the read ratio is 0.5. The theoretical boundary is an as-
ymptotic result when the log storage is negligible compared
with database storage. The actual boundary is slightly higher,
becauseHalfmoon-read logs twice for eachwrite (§4.1), while
Halfmoon-write logs once for each read. As the object size
increases, the boundary moves closer to 0.5 as the database
storage becomes the decisive part. As per our analysis in §4.6,

325

0.1 0.3 0.5 0.7 0.9
Read ratio

3.0

3.5

4.0

4.5

S
to
ra
ge

(M
B
)

0.1 0.3 0.5 0.7 0.9
Read ratio

5

10

15

0.1 0.3 0.5 0.7 0.9
Read ratio

12

14

16

0.1 0.3 0.5 0.7 0.9
Read ratio

15

25

35

45

Boki Halfmoon-read Halfmoon-write

1(a) size=256B, GC=10s. (b) size=256B, GC=60s. (c) size=1KB, GC=10s. (d) size=1KB, GC=60s.
Figure 12. Storage overhead of Boki and Halfmoon under different object size and GC interval.

0.1 0.3 0.5 0.7 0.9
Read ratio

30

40

50

60

70

M
ed

ia
n
la
te
nc

y
(m

s)

0.1 0.3 0.5 0.7 0.9
Read ratio

30

40

50

60

70

0.1 0.3 0.5 0.7 0.9
Read ratio

30

40

50

60

70

0.1 0.3 0.5 0.7 0.9
Read ratio

30

40

50

60

70
Boki Halfmoon-read Halfmoon-write

1(a) 100 requests/s. (b) 200 requests/s. (c) 300 requests/s. (d) 400 requests/s.
Figure 13. Runtime overhead of Boki and Halfmoon under different request rates.

the boundary condition is not affected by the choice of GC
interval in Figure 12. Halfmoon-read has a higher storage
usage than Boki under low read ratio, i.e. high write intensity,
because the overhead of multi-versioning outweighs that of
the read log records, which are rather scarce. Compared with
Boki, Halfmoon requires 1.2–3.4× less storage on average.

Runtime overhead. We measure the median latency under
different request rates. The object size is set to 256B and the
GC interval to 10s. Figure 13 shows the results. We predict in
§4.6 that the boundary condition is when the read intensity
is twice the write intensity, i.e., the read ratio is 2/3. The
actual boundary is slightly higher, because 𝐶𝑤 is more than
twice 𝐶𝑟 in practice (Figure 10). Figure 13 also confirms that
the request rate has little impact on the boundary condition.
Both of our protocols have lower latency than Boki, with
an improvement factor of 1.2–1.5×. We empirically validate
that Halfmoon’s runtime performance is insensitive to the
GC interval. This is because the overhead of querying the
log or database index typically scales logarithmically with
the number of log records or object versions.

6.4 Switching Delay

We use the same SSF as §6.3 to evaluate the switching delay.
Theworkload has two phases. The first phase runs Halfmoon-
write with a read ratio of 0.2. The second runs Halfmoon-
read with a read ratio of 0.8. We change the phase every
five seconds. Figure 14 shows the dynamics of SSF latency
over time. Under a moderate load of 300 requests/s, the
switching takes less than 100 ms. Under 600 requests/s (the
workload saturates at about 800 requests/s), it takes longer
to switch from Halfmoon-write to Halfmoon-read than the

0 5 10 15
Time (s)

0

25

50

75

100

La
te

nc
y

(m
s)

HM-W. HM-R. HM-W.

92 ms 70 ms

0 5 10 15
Time (s)

0

25

50

75

100

HM-W. HM-R. HM-W.

575 ms 88 ms

(a) 300 requests/s. (b) 600 requests/s.

Figure 14. The switching delay between Halfmoon’s protocols
(abbreviated as HM-R/W). The red dot shows SSF latency over time.
The blue vertical line marks the beginning of switching. The black
line marks its end.

other way around. This is because SSFs in the first phase have
a longer completion time due to the higher write intensity,
and Halfmoon needs to wait until all SSFs using the old
protocol finish before switching to the new protocol (§4.7).

7 Discussion
Ordering and timestamps. Statemachine replication (SMR)
[14, 28, 36, 57, 60, 83] and its equivalents [18, 21, 23, 26,
42, 53, 74, 96] are common ways of building fault-tolerant
distributed services [15]. SMR ensures that each process
replicating the service executes commands following a global
total order. Timestamp-based ordering is widely adopted in
SMR. Global ordering can be established using synchronized
clocks [27, 58] or timestamp agreement mechanisms [30, 36,
51]. Halfmoon’s event stream is built on top of SMR. It utilizes
the event timestamps to deterministically parameterize log-
free reads and writes. Halfmoon also requires that the event
stream be traceable, which is naturally satisfied by existing
SMR protocols that maintain a command log [18, 64, 82].

326

Recovery cost. Our asymmetric protocols are optimized for
the failure-free common case. During re-execution, Halfmoon
always replays log-free operations, while symmetric protocols
can skip logged operations. To incorporate the recovery cost,
we model the execution of an SSF as a Bernoulli Process, i.e.,
in each round the SSF succeeds with probability 1 − 𝑓 and
crashes with probability 𝑓 . The expected rounds of execution
before the SSF returns is 1/(1− 𝑓). Suppose Halfmoon has 𝑥
percent less runtime overhead than the symmetric protocol
in the failure-free case. Then Halfmoon outperforms the
symmetric protocols as long as 𝑓 is smaller than 𝑥 . According
to Figure 10, the boundary condition between Boki and
Halfmoon is 𝑓 ≈ 30%, which far exceeds the actual failure
rate of real applications.We validate in our technical report [6]
that Halfmoon outperforms Boki even at 𝑓 = 40%. In practice,
we can speed up recovery by opportunistically checkpointing
log-free operations. Unlike the logging of external operations,
which requires synchronization, checkp-ointing can be fully
asynchronous in the background.

Security and privacy. The write log in Halfmoon-read
serves a dual purpose (§4.6) and is visible to other SSFs.
To avoid leaking private data, we can perform access control
or encryption in the logging layer or the client library [112].
Only the shared fields should be exposed to other SSFs.

Program analysis and verification. Halfmoon takes no
application-specific hints from SSF code. That is, it assumes
the most pessimistic setup where all external operations are
non-idempotent, which must be logged or deterministically
parameterized. This is not necessarily true in practice. For
example, if an object is read-only, then all reads to that object
are inherently idempotent. Similarly, consider pushing to
a message queue. If the receiver SSF can handle duplicate
messages, then the push operation is also idempotent on
its own. To avoid unnecessary logging, we can use existing
tools [39, 40, 44, 48, 61, 67, 69, 76, 77, 80, 117] to analyze
the SSF code beforehand to rule out such operations [67,
73, 75, 103, 104, 108]. Halfmoon is log-optimal in providing
idempotent access to general mutable shared state.

8 Related Work
Stateful serverless computing on top of the stateless FaaS
paradigm has been identified as a challenging task by many
prior works [38, 45, 59, 91, 110]. A line of research optimizes
the transfer of intermediate state across functions in analytic
or stream processing workflows [59, 62, 70]. This paper
targets a different scenario of sharing mutable state across
SSFs. In terms of accessing the shared state, some works
[51, 90, 91, 101, 109] adopt a data-oriented approach using
table or key-value APIs, while others [2, 22, 24, 25, 29] adopt
an object-oriented approach by encapsulating the state and
access methods. Another line of research focuses on the
formal semantics [25, 50, 56] and verification of SSFs [16, 31].
Halfmoon studies the orthogonal problem of the minimally

necessary logging overhead for idempotence. It is an interest-
ing direction to integrate Halfmoon’s idea with these works
to automatically generate log-optimal SSF implementations.

Log-based replay is a well studied approach for fault tolera-
nce [32, 47, 84, 88, 95] and troubleshooting [39, 55, 78, 85, 94,
106, 107, 114, 115, 118]. The idea has been broadly embraced
by serverless computing [51, 56, 109]. Olive [88] proposes
to use write-ahead redo logging to achieve exactly-once
semantics. Beldi [109] extendsOlive to the serverless environ-
ment and supports transactional workflows. Boki [51] imple-
ments Beldi’s techniques using the shared log [18, 30, 97].
In terms of reducing logging overhead, DDOS [49] enforces
determinism in distributed systems and only requires logging
message arrival times. Halfmoon has similar inspirations in
stabilizing timestamps, and moves further to eliminate the
logging overhead for either reads or writes.

Multi-versioning has been widely adopted in ACID datab-
ases for concurrency control (MVCC) [81, 98, 102], where
reads target old versions and writes install new versions. In
the context of serverless computing, AFT [90] uses multi-
versioning to provide read atomic isolation. The Halfmoon-
read protocol applies the idea of existing works in a novel
way to enable log-free exactly-once reads.

9 Conclusion
Halfmoon introduces novel optimizations to the log-based
fault tolerance of SSFs. We design two logging protocols
that enforce exactly-once semantics while providing log-
free reads and writes, respectively. Instead of symmetrically
logging every single read and write, our key insight is that
it suffices to log either reads or writes, i.e., asymmetrically.
We theoretically prove that our protocols are log-optimal.
Therefore, Halfmoon pushes the overhead of log-based fault
tolerance to its lower bound.We provide a criterion for choos-
ing the right protocol for a given workload, and a pauseless
switching mechanism to switch protocols for dynamic workl-
oads. Experiments show that Halfmoon achieves 20%–40%
lower latency and 1.5–4.0× lower logging overhead than the
state-of-the-art solution.

Acknowledgements. We thank our shepherd, Ryan (Peng)
Huang, and the anonymous reviewers for their insightful
feedback. This work was supported in part by the National
Key Research and Development Program of China under the
grant number 2022YFB4500700, the National Natural Science
Foundation of China under the grant numbers 62325201
and 62172008, the National Natural Science Fund for the
Excellent Young Scientists Fund Program (Overseas). Xin Jin
and Xuanzhe Liu are the corresponding authors. Sheng Qi,
Xuanzhe Liu, and Xin Jin are affiliatedwith Key Laboratory of
High Confidence Software Technologies (Peking University),
Ministry of Education, School of Computer Science at Peking
University, and Center for Data Space Technology and System
at Peking University.

327

References

[1] 2023. AWS Step Functions. https://aws.amazon.com/step-functions/.
Accessed 2023-04-17.

[2] 2023. Azure Durable Entities. https://learn.microsoft.com/en-us/
azure/azure-functions/durable/durable-functions-entities. Accessed
2023-04-17.

[3] 2023. DeathStarBench. https://github.com/delimitrou/
DeathStarBench/. Accessed 2023-04-17.

[4] 2023. Functionbench. https://github.com/kmu-bigdata/serverless-
faas-workbench. Accessed 2023-04-17.

[5] 2023. Google Cloud Functions Triggers. https://cloud.google.com/
functions/docs/calling. Accessed 2023-04-17.

[6] 2023. Halfmoon: Log-Optimal Fault-Tolerant Stateful Serverless
Computing (Extended Version). https://tomquartz.github.io/files/
SOSP23_Halfmoon_extended.pdf. Accessed 2023-09-11.

[7] 2023. Logging in Azure Durable Functions. https://learn.microsoft.
com/en-us/azure/azure-functions/durable/durable-functions-
orchestrations. Accessed 2023-04-17.

[8] 2023. Retrying event-driven functions in Google Cloud. https://
cloud.google.com/functions/docs/bestpractices/retries. Accessed
2023-04-17.

[9] 2023. Sample projects for AWS Step Functions. https://docs.aws.
amazon.com/step-functions/latest/dg/create-sample-projects.html.
Accessed 2023-04-17.

[10] 2023. Serverless Examples. https://github.com/serverless/examples.
Accessed 2023-04-17.

[11] 2023. Serverlessbench. https://serverlessbench.systems/en-us/.
Accessed 2023-04-17.

[12] 2023. Statelessness of Google Cloud Functions. https://cloud.google.
com/functions/docs/concepts/execution-environment. Accessed
2023-04-17.

[13] 2023. Tutorial: Design and implementation of a simple Twitter clone
using PHP and the Redis key-value store. https://redis.io/topics/
twitter-clone. Accessed 2023-09-11.

[14] Marcos K Aguilera, Naama Ben-David, Rachid Guerraoui, Virendra J
Marathe, Athanasios Xygkis, and Igor Zablotchi. 2020. Microsecond
consensus for microsecond applications. In USENIX OSDI.

[15] Remzi Can Aksoy and Manos Kapritsos. 2019. Aegean: Replication
beyond the Client-Server Model. In ACM SOSP.

[16] Kalev Alpernas, Aurojit Panda, Leonid Ryzhyk, and Mooly Sagiv.
2021. Cloud-scale runtime verification of serverless applications. In
ACM Symposium on Cloud Computing.

[17] Mohamed Alzayat, Jonathan Mace, Peter Druschel, and Deepak Garg.
2023. Groundhog: Efficient Request Isolation in FaaS. In EuroSys.

[18] Mahesh Balakrishnan, Jason Flinn, Chen Shen, Mihir Dharamshi,
Ahmed Jafri, Xiao Shi, Santosh Ghosh, Hazem Hassan, Aaryaman
Sagar, Rhed Shi, et al. 2020. Virtual consensus in delos. In USENIX
OSDI.

[19] Mahesh Balakrishnan, Dahlia Malkhi, Vijayan Prabhakaran, Ted
Wobber, Michael Wei, and John D Davis. 2012. CORFU: A Shared Log
Design for Flash Clusters.. In USENIX NSDI.

[20] Mahesh Balakrishnan, Dahlia Malkhi, TedWobber, MingWu, Vijayan
Prabhakaran, Michael Wei, John D Davis, Sriram Rao, Tao Zou, and
Aviad Zuck. 2013. Tango: Distributed data structures over a shared
log. In ACM SOSP.

[21] Mahesh Balakrishnan, Chen Shen, Ahmed Jafri, Suyog Mapara, David
Geraghty, Jason Flinn, Vidhya Venkat, Ivailo Nedelchev, Santosh
Ghosh, Mihir Dharamshi, et al. 2021. Log-structured protocols in
delos. In ACM SOSP.

[22] Daniel Barcelona-Pons, Pierre Sutra, Marc Sánchez-Artigas, Gerard
París, and Pedro García-López. 2022. Stateful serverless computing
with crucial. ACM Transactions on Software Engineering and
Methodology (2022).

[23] Ken Birman and Thomas Joseph. 1987. Exploiting virtual synchrony
in distributed systems. In ACM SOSP.

[24] Sebastian Burckhardt, Badrish Chandramouli, Chris Gillum, David
Justo, Konstantinos Kallas, Connor McMahon, Christopher S
Meiklejohn, and Xiangfeng Zhu. 2022. Netherite: Efficient execution
of serverless workflows. Proceedings of the VLDB Endowment (2022).

[25] Sebastian Burckhardt, Chris Gillum, David Justo, Konstantinos Kallas,
Connor McMahon, and Christopher S Meiklejohn. 2021. Durable
functions: semantics for stateful serverless.. In ACM OOPSLA.

[26] Binbin Chen, Haifeng Yu, Yuda Zhao, and Phillip B Gibbons. 2014.
The cost of fault tolerance in multi-party communication complexity.
J. ACM (2014).

[27] James C Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes,
Christopher Frost, JJ Furman, Sanjay Ghemawat, Andrey Gubarev,
Christopher Heiser, Peter Hochschild, et al. 2012. Spanner: Google’s
globally-distributed database. In USENIX OSDI.

[28] Heming Cui, Rui Gu, Cheng Liu, Tianyu Chen, and Junfeng Yang.
2015. Paxos made transparent. In ACM SOSP.

[29] Martijn de Heus, Kyriakos Psarakis, Marios Fragkoulis, and Asterios
Katsifodimos. 2021. Distributed transactions on serverless stateful
functions. In Proceedings of the ACM International Conference on
Distributed and Event-based Systems.

[30] Cong Ding, David Chu, Evan Zhao, Xiang Li, Lorenzo Alvisi, and
Robbert Van Renesse. 2020. Scalog: Seamless reconfiguration and
total order in a scalable shared log. In USENIX NSDI.

[31] Haoran Ding, Zhaoguo Wang, Zhuohao Shen, Rong Chen, and Haibo
Chen. 2023. Automated Verification of Idempotence for Stateful
Serverless Applications. In USENIX OSDI.

[32] Zhiyuan Dong, Zhaoguo Wang, Xiaodong Zhang, Xian Xu,
Changgeng Zhao, Haibo Chen, Aurojit Panda, and Jinyang Li.
2023. Fine-Grained Re-Execution for Efficient Batched Commit of
Distributed Transactions. (2023).

[33] Dong Du, Qingyuan Liu, Xueqiang Jiang, Yubin Xia, Binyu Zang,
and Haibo Chen. 2022. Serverless computing on heterogeneous
computers. In ACM ASPLOS.

[34] DongDu, Tianyi Yu, Yubin Xia, Binyu Zang, Guanglu Yan, Chenggang
Qin, Qixuan Wu, and Haibo Chen. 2020. Catalyzer: Sub-millisecond
startup for serverless computing with initialization-less booting. In
ACM ASPLOS.

[35] Mostafa Elhemali, Niall Gallagher, Bin Tang, Nick Gordon, Hao
Huang, Haibo Chen, Joseph Idziorek, Mengtian Wang, Richard Krog,
Zongpeng Zhu, et al. 2022. Amazon {DynamoDB}: A Scalable,
Predictably Performant, and Fully Managed {NoSQL} Database
Service. In USENIX ATC.

[36] Vitor Enes, Carlos Baquero, Alexey Gotsman, and Pierre Sutra. 2021.
Efficient replication via timestamp stability. In EuroSys.

[37] Henrique Fingler, Zhiting Zhu, Esther Yoon, Zhipeng Jia, Emmett
Witchel, and Christopher J Rossbach. 2022. DGSF: Disaggregated
GPUs for Serverless Functions. In IEEE International Parallel and
Distributed Processing Symposium.

[38] Sadjad Fouladi, Francisco Romero, Dan Iter, Qian Li, Shuvo Chatterjee,
Christos Kozyrakis, Matei Zaharia, and Keith Winstein. 2019. From
Laptop to Lambda: Outsourcing Everyday Jobs to Thousands of
Transient Functional Containers. In USENIX ATC.

[39] Xinwei Fu, Wook-Hee Kim, Ajay Paddayuru Shreepathi, Mohannad
Ismail, Sunny Wadkar, Dongyoon Lee, and Changwoo Min. 2021.
Witcher: Systematic crash consistency testing for non-volatile
memory key-value stores. In ACM SOSP.

[40] Xinwei Fu, Dongyoon Lee, and Changwoo Min. 2022. {DURINN}:
Adversarial Memory and Thread Interleaving for Detecting Durable
Linearizability Bugs. In USENIX OSDI.

[41] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty, Priyal
Rathi, Nayan Katarki, Ariana Bruno, Justin Hu, Brian Ritchken,
Brendon Jackson, et al. 2019. An open-source benchmark suite for

328

https://aws.amazon.com/step-functions/
https://learn.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-entities
https://learn.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-entities
https://github.com/delimitrou/DeathStarBench/
https://github.com/delimitrou/DeathStarBench/
https://github.com/kmu-bigdata/serverless-faas-workbench
https://github.com/kmu-bigdata/serverless-faas-workbench
https://cloud.google.com/functions/docs/calling
https://cloud.google.com/functions/docs/calling
https://tomquartz.github.io/files/SOSP23_Halfmoon_extended.pdf
https://tomquartz.github.io/files/SOSP23_Halfmoon_extended.pdf
https://learn.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-orchestrations
https://learn.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-orchestrations
https://learn.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-orchestrations
https://cloud.google.com/functions/docs/bestpractices/retries
https://cloud.google.com/functions/docs/bestpractices/retries
https://docs.aws.amazon.com/step-functions/latest/dg/create-sample-projects.html
https://docs.aws.amazon.com/step-functions/latest/dg/create-sample-projects.html
https://github.com/serverless/examples
https://serverlessbench.systems/en-us/
https://cloud.google.com/functions/docs/concepts/execution-environment
https://cloud.google.com/functions/docs/concepts/execution-environment
https://redis.io/topics/twitter-clone
https://redis.io/topics/twitter-clone

microservices and their hardware-software implications for cloud &
edge systems. In ACM ASPLOS.

[42] Aishwarya Ganesan, Ramnatthan Alagappan, Andrea C Arpaci-
Dusseau, and Remzi H Arpaci-Dusseau. 2021. Exploiting nil-
externality for fast replicated storage. In ACM SOSP.

[43] Zhiyuan Guo, Yizhou Shan, Xuhao Luo, Yutong Huang, and Yiying
Zhang. 2022. Clio: A hardware-software co-designed disaggregated
memory system. In ACM ASPLOS.

[44] Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R. Lorch,
Bryan Parno, Michael L. Roberts, Srinath Setty, and Brian Zill.
2017. IronFleet: Proving Safety and Liveness of Practical Distributed
Systems. Commun. ACM (2017).

[45] JosephMHellerstein, Jose Faleiro, Joseph EGonzalez, Johann Schleier-
Smith, Vikram Sreekanti, Alexey Tumanov, and ChenggangWu. 2019.
Serverless computing: One step forward, two steps back. (2019).

[46] Maurice P Herlihy and Jeannette M Wing. 1990. Linearizability: A
correctness condition for concurrent objects. ACM Transactions on
Programming Languages and Systems (1990).

[47] Yige Hu, Zhiting Zhu, Ian Neal, Youngjin Kwon, Tianyu Cheng,
Vijay Chidambaram, and Emmett Witchel. 2019. TxFS: Leveraging
file-system crash consistency to provide ACID transactions. ACM
Transactions on Storage (2019).

[48] Peng Huang, Chuanxiong Guo, Jacob R Lorch, Lidong Zhou, and
Yingnong Dang. 2018. Capturing and enhancing in situ system
observability for failure detection. In USENIX OSDI.

[49] Nicholas Hunt, Tom Bergan, Luis Ceze, and Steven D Gribble.
2013. DDOS: taming nondeterminism in distributed systems. ACM
SIGPLAN Notices (2013).

[50] Abhinav Jangda, Donald Pinckney, Yuriy Brun, and Arjun Guha. 2019.
Formal foundations of serverless computing. (2019).

[51] Zhipeng Jia and Emmett Witchel. 2021. Boki: Stateful serverless
computing with shared logs. In ACM SOSP.

[52] Zhipeng Jia and Emmett Witchel. 2021. Nightcore: efficient
and scalable serverless computing for latency-sensitive, interactive
microservices. In ACM ASPLOS.

[53] Ricardo Jiménez-Peris, Gustavo Alonso, and Bettina Kemme. 2003.
Are quorums an alternative for data replication? ACM Transactions
on Database Systems (TODS) (2003).

[54] Kostis Kaffes, Neeraja J. Yadwadkar, and Christos Kozyrakis. 2019.
Centralized Core-Granular Scheduling for Serverless Functions. In
ACM Symposium on Cloud Computing.

[55] Jonathan Kaldor, Jonathan Mace, Michał Bejda, Edison Gao, Wiktor
Kuropatwa, Joe O’Neill, Kian Win Ong, Bill Schaller, Pingjia Shan,
Brendan Viscomi, et al. 2017. Canopy: An end-to-end performance
tracing and analysis system. In ACM SOSP.

[56] Konstantinos Kallas, Haoran Zhang, Rajeev Alur, Sebastian Angel,
and Vincent Liu. 2023. Executing Microservice Applications on
Serverless, Correctly. ACM POPL (2023).

[57] Manos Kapritsos, YangWang, Vivien Quema, Allen Clement, Lorenzo
Alvisi, and Mike Dahlin. 2012. All about eve: Execute-verify
replication for multi-core servers. In USENIX OSDI.

[58] Antonios Katsarakis, Vasilis Gavrielatos, MR Siavash Katebzadeh,
Arpit Joshi, Aleksandar Dragojevic, Boris Grot, and Vijay Nagarajan.
2020. Hermes: A fast, fault-tolerant and linearizable replication
protocol. In ACM ASPLOS.

[59] Ana Klimovic, Yawen Wang, Patrick Stuedi, Animesh Trivedi, Jonas
Pfefferle, and Christos Kozyrakis. 2018. Pocket: Elastic Ephemeral
Storage for Serverless Analytics.. In USENIX OSDI.

[60] Marios Kogias and Edouard Bugnion. 2020. HovercRaft: Achieving
scalability and fault-tolerance for microsecond-scale datacenter
services. In EuroSys.

[61] Eric Koskinen and Junfeng Yang. 2016. Reducing crash recoverability
to reachability. In ACM POPL.

[62] Swaroop Kotni, Ajay Nayak, Vinod Ganapathy, and Arkaprava Basu.
2021. Faastlane: Accelerating Function-as-a-Service Workflows.. In
USENIX ATC.

[63] Leslie Lamport. 1979. How to make a multiprocessor computer
that correctly executes multiprocess programs. IEEE Trans. Comput.
(1979).

[64] Leslie Lamport. 2001. Paxos made simple. ACM SIGACT News (2001).
[65] Günter Last andMathew Penrose. 2017. Lectures on the Poisson process.

Vol. 7. Cambridge University Press.
[66] Sekwon Lee, Soujanya Ponnapalli, Sharad Singhal, Marcos K Aguilera,

Kimberly Keeton, and Vijay Chidambaram. 2022. DINOMO:
An Elastic, Scalable, High-Performance Key-Value Store for
Disaggregated Persistent Memory. Proceedings of the VLDB
Endowment (2022).

[67] Guangpu Li, Haopeng Liu, Xianglan Chen, Haryadi S Gunawi, and
Shan Lu. 2019. Dfix: automatically fixing timing bugs in distributed
systems. In ACM Conference on Programming Language Design and
Implementation.

[68] Jialin Li, Ellis Michael, Naveen Kr Sharma, Adriana Szekeres, and
Dan RK Ports. 2016. Just Say NO to Paxos Overhead: Replacing
Consensus with Network Ordering.. In USENIX OSDI.

[69] Jiaxin Li, Yiming Zhang, Shan Lu, Haryadi S Gunawi, Xiaohui Gu,
Feng Huang, and Dongsheng Li. 2023. Performance Bug Analysis
and Detection for Distributed Storage and Computing Systems. ACM
Transactions on Storage (2023).

[70] Zijun Li, Yushi Liu, Linsong Guo, Quan Chen, Jiagan Cheng, Wenli
Zheng, and Minyi Guo. 2022. Faasflow: Enable efficient workflow
execution for function-as-a-service. In ACM ASPLOS.

[71] Barbara Liskov, Liuba Shrira, and John Wroclawski. 1991. Efficient at-
most-oncemessages based on synchronized clocks. ACMTransactions
on Computer Systems (1991).

[72] John DC Little. 2011. Little’s Law as viewed on its 50th anniversary.
Operations Research (2011).

[73] Haopeng Liu, Guangpu Li, Jeffrey F Lukman, Jiaxin Li, Shan Lu,
Haryadi S Gunawi, and Chen Tian. 2017. Dcatch: Automatically
detecting distributed concurrency bugs in cloud systems. ACM
SIGARCH Computer Architecture News (2017).

[74] Joshua Lockerman, Jose M. Faleiro, Juno Kim, Soham Sankaran,
Daniel J. Abadi, James Aspnes, Siddhartha Sen, and Mahesh
Balakrishnan. 2018. The FuzzyLog: A Partially Ordered Shared Log.
In USENIX OSDI.

[75] Jeffrey F Lukman, Huan Ke, Cesar A Stuardo, Riza O Suminto,
Daniar H Kurniawan, Dikaimin Simon, Satria Priambada, Chen Tian,
Feng Ye, Tanakorn Leesatapornwongsa, et al. 2019. Flymc: Highly
scalable testing of complex interleavings in distributed systems. In
EuroSys.

[76] Haojun Ma, Hammad Ahmad, Aman Goel, Eli Goldweber, Jean-
Baptiste Jeannin, Manos Kapritsos, and Baris Kasikci. 2022. Sift:
Using Refinement-guided Automation to Verify Complex Distributed
Systems. In USENIX ATC.

[77] Haojun Ma, Aman Goel, Jean-Baptiste Jeannin, Manos Kapritsos,
Baris Kasikci, and Karem A Sakallah. 2019. I4: incremental inference
of inductive invariants for verification of distributed protocols. In
ACM SOSP.

[78] Jonathan Mace, Ryan Roelke, and Rodrigo Fonseca. 2015. Pivot
tracing: Dynamic causal monitoring for distributed systems. In ACM
SOSP.

[79] Kostas Meladakis, Chrysostomos Zeginis, Kostas Magoutis, and
Dimitris Plexousakis. 2022. Transferring transactional business
processes to FaaS. In Proceedings of the Eighth International Workshop
on Serverless Computing.

[80] Luke Nelson, James Bornholt, Ronghui Gu, Andrew Baumann, Emina
Torlak, and XiWang. 2019. Scaling symbolic evaluation for automated
verification of systems code with Serval. In ACM SOSP.

329

[81] Thomas Neumann, Tobias Mühlbauer, and Alfons Kemper. 2015. Fast
serializablemulti-version concurrency control formain-memory data-
base systems. In ACM SIGMOD.

[82] Diego Ongaro and John Ousterhout. 2014. In search of an
understandable consensus algorithm. In USENIX ATC.

[83] Haochen Pan, Jesse Tuglu, Neo Zhou, Tianshu Wang, Yicheng
Shen, Xiong Zheng, Joseph Tassarotti, Lewis Tseng, and Roberto
Palmieri. 2021. Rabia: Simplifying state-machine replication through
randomization. In ACM SOSP.

[84] Dai Qin, Angela Demke Brown, and Ashvin Goel. 2017. Scalable
replay-based replication for fast databases. Proceedings of the VLDB
Endowment (2017).

[85] Andrew Quinn, Jason Flinn, Michael Cafarella, and Baris Kasikci.
2022. Debugging the {OmniTable} Way. In USENIX OSDI.

[86] Francisco Romero, Gohar Irfan Chaudhry, Íñigo Goiri, Pragna
Gopa, Paul Batum, Neeraja J. Yadwadkar, Rodrigo Fonseca, Christos
Kozyrakis, and Ricardo Bianchini. 2021. Faa$T: A Transparent Auto-
Scaling Cache for Serverless Applications. In ACM Symposium on
Cloud Computing.

[87] Johann Schleier-Smith, Vikram Sreekanti, Anurag Khandelwal, Joao
Carreira, Neeraja J Yadwadkar, Raluca Ada Popa, Joseph E Gonzalez,
Ion Stoica, and David A Patterson. 2021. What serverless computing
is and should become: The next phase of cloud computing. Commun.
ACM (2021).

[88] Srinath TV Setty, Chunzhi Su, Jacob R Lorch, Lidong Zhou, Hao Chen,
Parveen Patel, and Jinglei Ren. 2016. Realizing the Fault-Tolerance
Promise of Cloud Storage Using Locks with Intent.. In USENIX OSDI.

[89] Simon Shillaker and Peter Pietzuch. 2020. Faasm: Lightweight
isolation for efficient stateful serverless computing. In USENIX ATC.

[90] Vikram Sreekanti, Chenggang Wu, Saurav Chhatrapati, Joseph E
Gonzalez, Joseph M Hellerstein, and Jose M Faleiro. 2020. A fault-
tolerance shim for serverless computing. In EuroSys.

[91] Vikram Sreekanti, Chenggang Wu, Xiayue Charles Lin, Johann
Schleier-Smith, Joseph E Gonzalez, Joseph M Hellerstein, and
Alexey Tumanov. 2020. Cloudburst: Stateful Functions-as-a-Service.
Proceedings of the VLDB Endowment (2020).

[92] Yang Tang and Junfeng Yang. 2020. Lambdata: Optimizing serverless
computing by making data intents explicit. In IEEE International
Conference on Cloud Computing.

[93] Dmitrii Ustiugov, Plamen Petrov, Marios Kogias, Edouard Bugnion,
and Boris Grot. 2021. Benchmarking, analysis, and optimization of
serverless function snapshots. In ACM ASPLOS.

[94] Kaushik Veeraraghavan, Dongyoon Lee, Benjamin Wester, Jessica
Ouyang, Peter M Chen, Jason Flinn, and Satish Narayanasamy.
2012. DoublePlay: Parallelizing sequential logging and replay. ACM
Transactions on Computer Systems (2012).

[95] Stephanie Wang, John Liagouris, Robert Nishihara, Philipp Moritz,
Ujval Misra, Alexey Tumanov, and Ion Stoica. 2019. Lineage stash:
fault tolerance off the critical path. In ACM SOSP.

[96] Zhaoguo Wang, Changgeng Zhao, Shuai Mu, Haibo Chen, and
Jinyang Li. 2019. On the Parallels between Paxos and Raft, and
how to Port Optimizations. In ACM PODC.

[97] Michael Wei, Amy Tai, Christopher J Rossbach, Ittai Abraham,
Maithem Munshed, Medhavi Dhawan, Jim Stabile, Udi Wieder, Scott
Fritchie, Steven Swanson, et al. 2017. vcorfu: A cloud-scale object
store on a shared log. In USENIX NSDI.

[98] Xingda Wei, Rong Chen, Haibo Chen, Zhaoguo Wang, Zhenhan
Gong, and Binyu Zang. 2021. Unifying Timestamp with Transaction
Ordering forMVCCwith Decentralized Scalar Timestamp.. InUSENIX
NSDI.

[99] Xingda Wei, Fangming Lu, Tianxia Wang, J Gu, Y Yang, R Chen, and
H Chen. 2023. No provisioned concurrency: Fast RDMA-codesigned
remote fork for serverless computing. (2023).

[100] Jinfeng Wen, Zhenpeng Chen, Xin Jin, and Xuanzhe Liu. 2023. Rise
of the Planet of Serverless Computing: A Systematic Review. ACM
Transactions on Software Engineering and Methodology (2023).

[101] Chenggang Wu, Vikram Sreekanti, and Joseph M Hellerstein. 2020.
Transactional causal consistency for serverless computing. In ACM
SIGMOD.

[102] YingjunWu, Joy Arulraj, Jiexi Lin, Ran Xian, and Andrew Pavlo. 2017.
An empirical evaluation of in-memory multi-version concurrency
control. Proceedings of the VLDB Endowment (2017).

[103] Jianan Yao, Runzhou Tao, Ronghui Gu, and Jason Nieh. 2022.
{DuoAI}: Fast, Automated Inference of Inductive Invariants for
Verifying Distributed Protocols. In USENIX OSDI.

[104] Jianan Yao, Runzhou Tao, Ronghui Gu, Jason Nieh, Suman Jana,
and Gabriel Ryan. 2021. DistAI: Data-Driven Automated Invariant
Learning for Distributed Protocols.. In USENIX OSDI.

[105] Tianyi Yu, Qingyuan Liu, Dong Du, Yubin Xia, Binyu Zang,
Ziqian Lu, Pingchao Yang, Chenggang Qin, and Haibo Chen. 2020.
Characterizing serverless platforms with serverlessbench. In ACM
Symposium on Cloud Computing.

[106] Ding Yuan, Haohui Mai, Weiwei Xiong, Lin Tan, Yuanyuan Zhou,
and Shankar Pasupathy. 2010. Sherlog: error diagnosis by connecting
clues from run-time logs. In ACM ASPLOS.

[107] Ding Yuan, Soyeon Park, Peng Huang, Yang Liu, Michael M Lee,
Xiaoming Tang, Yuanyuan Zhou, and Stefan Savage. 2012. Be
conservative: Enhancing failure diagnosis with proactive logging.
In USENIX OSDI.

[108] Xinhao Yuan and Junfeng Yang. 2020. Effective concurrency testing
for distributed systems. In ACM ASPLOS.

[109] Haoran Zhang, Adney Cardoza, Peter Baile Chen, Sebastian Angel,
and Vincent Liu. 2020. Fault-tolerant and transactional stateful
serverless workflows. In USENIX OSDI.

[110] Tian Zhang, Dong Xie, Feifei Li, and Ryan Stutsman. 2019. Narrowing
the Gap Between Serverless and its State with Storage Functions. In
ACM Symposium on Cloud Computing.

[111] Wen Zhang, Vivian Fang, Aurojit Panda, and Scott Shenker. 2020.
Kappa: A programming framework for serverless computing. In ACM
Symposium on Cloud Computing.

[112] Wen Zhang, Eric Sheng, Michael Chang, Aurojit Panda, Mooly Sagiv,
and Scott Shenker. 2022. Blockaid: Data Access Policy Enforcement
for Web Applications. In USENIX OSDI.

[113] Yanqi Zhang, Íñigo Goiri, Gohar Irfan Chaudhry, Rodrigo Fonseca,
Sameh Elnikety, Christina Delimitrou, and Ricardo Bianchini. 2021.
Faster and cheaper serverless computing on harvested resources. In
ACM SOSP.

[114] Yongle Zhang, Serguei Makarov, Xiang Ren, David Lion, and Ding
Yuan. 2017. Non-Intrusive Failure Reproduction for Distributed
Systems using the Partial Trace Principle. In ACM SOSP.

[115] Yongle Zhang, Serguei Makarov, Xiang Ren, David Lion, and Ding
Yuan. 2017. Pensieve: Non-intrusive failure reproduction for
distributed systems using the event chaining approach. InACM SOSP.

[116] Ziming Zhao, Mingyu Wu, Jiawei Tang, Binyu Zang, Zhaoguo Wang,
and Haibo Chen. 2023. BeeHive: Sub-second elasticity for web
services with Semi-FaaS execution. In ACM ASPLOS.

[117] Mo Zou, Haoran Ding, Dong Du, Ming Fu, Ronghui Gu, and Haibo
Chen. 2019. Using concurrent relational logic with helpers for
verifying the AtomFS file system. In ACM SOSP.

[118] Gefei Zuo, Jiacheng Ma, Andrew Quinn, Pramod Bhatotia, Pedro
Fonseca, and Baris Kasikci. 2021. Execution reconstruction:
Harnessing failure reoccurrences for failure reproduction. In ACM
Conference on Programming Language Design and Implementation.

330

	Abstract
	1 Introduction
	2 Motivation
	3 Halfmoon Overview
	4 Halfmoon Design
	4.1 Halfmoon-Read: the Log-Free Read Protocol
	4.2 Halfmoon-Write: the Log-Free Write Protocol
	4.3 Log Optimality
	4.4 Consistency
	4.5 Garbage Collection
	4.6 Choosing the Right Protocol
	4.7 Switching between Protocols

	5 Implementation
	5.1 Resolving Conflicts Among Peer Instances
	5.2 Switching Between Protocols

	6 Evaluation
	6.1 Microbenchmarks
	6.2 End-to-End Application Workloads
	6.3 System Overhead
	6.4 Switching Delay

	7 Discussion
	8 Related Work
	9 Conclusion
	References

