Check for
Updates

Klotski: Efficient and Safe Network Migration
of Large Production Datacenters

Yihao Zhao* Xiaoxiang Zhang* Hang Zhu
Peking University Meta Johns Hopkins University
Ying Zhang Zhaodong Wang Yuandong Tian
Meta Meta Meta Al
Alex Nikulkov Joao Ferreira Xuanzhe Liu
Meta Meta Peking University
Xin Jin
Peking University
ABSTRACT ACM Reference Format:

This paper presents the design, implementation, evaluation, and
deployment of Meta’s production network migration system. We first
introduce the network migration problem for large-scale production
datacenter networks (DCNs). A network migration task at Meta
touches as many as hundreds of switches and tens of thousands
of circuits per datacenter (DC), and involves physical deployment
work on site that can last months. We describe real-world migration
challenges, covering complex and evolving DCN architectures and
operational constraints. We mathematically formalize the problem
of generating efficient and safe migration plans, and exploit the
inherent symmetry and locality of DCN topologies to prune the
search space. We design an ordering-agnostic compact topology
representation to eliminate redundant satisfiability checking, and
apply the A* algorithm with a domain-specific priority function to
find the optimal plan. Evaluation results on a range of production
migration cases show that Klotski reduces the time to find optimal
migration plans by up to 381x compared to prior solutions. We hope
by introducing the problem and sharing our deployment experience,
this work can provide a useful context for network migration in the
real world and inspire future research.

CCS CONCEPTS

* Networks — Network management; Network design principles.

KEYWORDS

Datacenter network, network migration

*Yihao Zhao and Xiaoxiang Zhang contributed eugally.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

ACM SIGCOMM °23, September 10—14, 2023, New York, NY, USA

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0236-5/23/09. .. $15.00
https://doi.org/10.1145/3603269.3604818

783

Yihao Zhao, Xiaoxiang Zhang, Hang Zhu, Ying Zhang, Zhaodong Wang,
Yuandong Tian, Alex Nikulkov, Joao Ferreira, Xuanzhe Liu, and Xin Jin.
2023. Klotski: Efficient and Safe Network Migration of Large Production
Datacenters. In ACM SIGCOMM 2023 Conference (SIGCOMM ’23), Septem-
ber 10-14, 2022, New York City, USA. ACM, New York, NY, USA, 15 pages.
https://doi.org/10.1145/3603269.3604818

1 INTRODUCTION

Large web service providers heavily depend on datacenter networks
(DCNs) to deliver reliable and smooth experience to users. DCNs
are constantly scaling and evolving because of at least three reasons.
First, the datacenter (DC) traffic is increasing at a fast pace under
new technology trends, exemplified by recent advancements in cloud
computing [40, 47], big data [12, 28], and machine learning [10, 51].
Second, switch failures are the norm rather than the exception in
large-scale multi-layer DCNs [4, 14]. A failure recovery process
usually requires replacing failed switches or updating their firmware
or software. Third, there are routine procedures to retire old hardware
and onboard new hardware [48, 53].

The scaling and evolution of DCNs rely on network migration,
which changes the network by adding, removing, or swapping switches
and circuits. Migrating a DCN is time-consuming, especially for
large-scale multi-layer production DCNs. Importantly, unlike up-
dating the control plane configurations or data plane flow tables,
network migration involves physical deployment work—a manual
process performed by human operators. A migration task at Meta
can touch hundreds of switches and tens of thousands of circuits per
DC, and can take months based on the scale and complexity (§2).

The objective for network operators is to perform network mi-
grations efficiently and safely. First, it is important to minimize the
migration time, because network migration is often triggered by
important operational needs, such as increasing the total capacity,
recovering from failures, and onboarding switches with new func-
tionalities. These operational needs are strongly correlated with
application demands and user experience. Second, safety must be
guaranteed during the migration. That is, the network, when old
switches have been removed and new switches are not onboarded,
must satisfy dynamic traffic demands during the migration and leave
sufficient headroom to absorb traffic bursts from flash crowds.

https://doi.org/10.1145/3603269.3604818
https://doi.org/10.1145/3603269.3604818
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3603269.3604818&domain=pdf&date_stamp=2023-09-01

ACM SIGCOMM ’23, September 10-14, 2023, New York, NY, USA

Efficiency and safety are difficult to achieve under various con-
straints in production settings. First, because we cannot precisely
drain all circuits at the same time, severe congestion can happen in
the transient, which is known as traffic funneling. Second, multiple
datacenters may be migrated at the same period, and independently
migrating each can make them unconnected during some middle
steps. Third, there can be different meshing patterns between the
old topology and new topology, increasing the complexity of the
migration. Forth, multiple generations of DCNs can coexist. Migrat-
ing them would need different plans and migrating multiple of them
together requires even more careful planning.

Given these constraints, it is challenging to find the optimal plan
that minimizes migration time while ensuring safety. A migration
plan contains a sequence of actions that drain or undrain traffic from
particular switches and circuits. Finding the optimal plan amounts to
finding the optimal ordering of actions, which is a hard combinatorial
optimization problem. For example, changing 100 switches has more
than 100! (or 9.3 x 10'°7) plans, while large DCNs have tens of
thousands of switches.

We present Klotski, a system for efficient and safe DCN migra-
tion. Klotski is able to find the optimal migration plan under safety
constraints for large DCNs with O(10, 000) switches and O(100, 000)
circuits in just a few minutes.

To address the scalability challenges, Klotski first exploits the
inherent symmetry of DCN topologies to prune the search space.
It divides a DCN topology into multiple symmetry blocks, and
different orderings of actions in the same block have equivalent
search states. We remark that leveraging the topology symmetry has
been applied to different contexts of network management [4, 32].
In particular, Janus [4] is a recent work that applies symmetry to
planning network changes. For complex DCN topologies, however,
one symmetry block contains few switches, which cannot prune the
search space effectively. Klotski further considers the switch locality.
Based on our observation that neighbor switches can be operated in
parallel with little operational cost and little impact on safety, we
merge several symmetry blocks into one operation block, in which
the switches are operated together.

Klotski applies A* algorithm [18] to efficiently find the optimal
migration plan in the pruned search space. A* algorithm is a canoni-
cal informed search algorithm that uses a priority function to give
preferences to the states that are likely to be close to the target state.
The crux of our solution is a domain-specific priority function tai-
lored to network migration. The function is a composition of the
existing cost from the original state to the current state and the esti-
mation of the lowest future cost from the current state to the target
state. It enables Klotski to quickly find the target, i.e. efficiency, and
guarantees that the target is optimal, i.e. optimality.

The dominant part of the search is checking the satisfiability of
the safety constraints for the visited states. Satisfiability checking
is time-consuming because it examines the traffic demands and
port constraints on the DCN topology that can contain as many as
0(10,000) switches and O(100, 000) circuits. We observe that many
states are equivalent in terms of constraint satisfiability as it is only
concerned with the intermediate network topology. A natural idea is
to store the satisfiability of each visited intermediate topology in a
table, obviating the need for redundant satisfiability checking. But

784

Zhao, et al.

1
Spine Plane 1 Spine Plane 4 Spine |1 Region
(0000 @000 ©9000] (0000 suitches ||
\ (Ssw) |i
. CQua>
Fabric |, -
Switches || Fabric Aggregator (HGRID)
(Fsw) |, fa001 ()
Rack |1
Switches ||
(RsW) ||
.
Pod 1 Pod N 1
1
Fabric FA

Figure 1: Datacenter network architecture at Meta.

naively doing so incurs excessive indexing overhead and memory
footprint due to the scale of large DCN topologies.

Our important intuition is that the ordering of the actions does not
matter for satisfiability checking, because satisfiability checking only
examines the topology after these actions are performed. Based on
this intuition, we design a compact topology representation that uses
a vector to only store the number of finished actions of each type.
This ordering-agnostic representation enables Klotski to efficiently
store intermediate satisfiability checking results and significantly
reduce the computation overhead and memory footprint.

From an engineering perspective, we implement an end-to-end
pipeline for managing the entire life cycle of network migration.
Klotski is productionized as a component of Engineering Design
Package at Meta. We develop a Network Product Definition (NPD)
format that represents production DCNs as input to Klotski. It also
provides an interface to accommodate different cost functions. We
evaluate Klotski with a variety of production DCN topologies and
network migration cases. Klotski reduces the planning time by up to
381x compared to state-of-the-art DCN migration planners [4, 37].

We have deployed Klotski at Meta since 2020 to generate mi-
gration plans for over 100 datacenters within 20 regions. We share
our deployment experience from three aspects. First, we share the
need to consider special routing configurations and incorporate traf-
fic demand forecasts into the migration process. Failing to do so
would result in congestion during the migration. Second, we share
operational issues we have to deal with when applying Klotski in
production, including failures during operation duration, simulta-
neous operations, space and power constraints, unexpected traffic
surges, and operating expense (OPEX) savings. Finally, there is a
growing interest in applying deep learning (DL) to networking in
both academia and industry. We started in early 2021 and collabo-
rated with top DL researchers and engineers at Meta for over two
years. We share what we have tried, contrast classical methods and
DL methods with first-hand experience, and inform the community
of the practical obstacles we found when trying to apply DL to a
real-world network management problem.

2 NETWORK MIGRATION AT META

In this section, we first introduce the DCN architecture at Meta.
Then we describe the network migration operations and discuss the
practical challenges we face. We lastly summarize network migration
types at Meta.

Klotski: Efficient and Safe Network Migration of Large Production Datacenters

MPOE Room

RSW

(a) Logical view.

(b) Physical view.

ACM SIGCOMM ’23, September 10-14, 2023, New York, NY, USA

(d) Different generations.

Figure 2: Motivating examples for network migration.

2.1 DCN Architecture at Meta

DCs at Meta are the most important infrastructure to provide com-
pute and storage capacity to support the applications and services for
billions of users. A region refers to DC facilities in geographically-
closed proximity, e.g., in a campus, which usually consists of six
to seven buildings. In the following, we introduce the important
switch roles in a bottom-up order in the DCN topology, as shown in
Figure 1.

Datacenter fabric. A Fabric network provides mass connectivity
for servers with three layers of switches. A rack of servers is con-
nected to a Rack Switch (RSW). RSWs are interconnected by Fabric
Switches (FSWs) in the upper level, which in turn are connected by
Spine Switches (SSWs). The smallest unit of deployment in a Fabric
is called a Pod. One Pod consists of four FSWs and the connected
RSWs. Besides, a disjoint end-to-end path within the Fabric serviced
by a set of SSWs and FSWs is called a Plane. Switches in the same
plane are shown in the same color in Figure 1.

Fabric aggregation layer. Multiple Fabrics in the same region are
connected by a FA (Fabric Aggregate) layer. Its primary function is
to serve the traffic that flows between buildings in a region (east/west)
and traffic exiting or entering a region. Our FA layer has gone
through multiple generations, and the latest generation is called
HGRID (HexaGrid). Different from previous generations of using
monolithic expensive switches, the HGRID employs a disaggregated
architecture and consists of a set of commodity switches. The sub-
switches facing downward to the fabric are grouped together and
called FADU (Fabric Aggregate Downlink Unit), while the upward
sub-switch group is called FAUU (Fabric Aggregate Uplink Unit).
The disaggregated approach allows us to accommodate larger re-
gions and different traffic patterns while providing the flexibility
to adapt to future growth. HGRID provides an ingress and egress
point from the region to the backbone. Given its important position,
migrating from the previous generations to the latest has been a
challenging task.

Regional aggregation. Beyond FA, we introduce another layer
called MA (Metro Aggregation) that provides connectivity to differ-
ent regions that are close in proximity. We also adopt disaggregation
architecture for MA, called DMAG.

785

Backbone. At the top layer, the wide-area backbone network inter-
connects datacenters globally. The datacenter to Backbone connec-
tivity has also evolved due to the scale challenges. DRs (Datacenter
Routers) are high-end routers sitting at the boundary of datacenter
and Backbone. EB routers are the border routers from the backbone
side to connect to DR. EBB (Express Backbone routers) are at the
core of the WAN.

2.2 Why is it hard?

Network migration refers to the process of changing the network by
adding, removing, or swapping switches and circuits. It is a common
operation in DCNs and can be triggered for multiple reasons, such as
adopting new hardware and technology, decommissioning old equip-
ment, expanding capacity, and introducing new topology/routing.
A network migration task in this paper typically touches thousands
to tens of thousands of circuits per DC, and thus could result in
significant changes to the underlying network topology and capacity.
In addition, a migration often involves physical deployment work
on site which can last months. Thus, given its potential impact and
its lengthy duration, we have to plan the migration carefully and
account for all possible intermediate states.

We explain the migration using a simplified DCN topology be-
tween two layers. The migration job is to upgrade the FA layer from
an old generation to a new generation (HGRID) with more nodes
and larger capacity, shown in Figure 2 (a).

Consider efficiency. While Figure 2(a) shows the logical view of
the migration, we expand its physical connectivity to Figure 2(b).
There are four planes of SSWs, shown in four different colors. To
simplify, we assume there are four FAs at the top layer. Each FA
connects to one SSW in each plane. A naive approach is that we
pick one link between SSW and the old FA (e.g., circuit 13), drain
the link, physically change the wiring to connect to HGRID, and
then undrain the link to recover the traffic. However, the number of
circuits that needs to be migrated can be even tens of thousands in
one migration. Moving circuits one by one would be inefficient.

Consider safety. In the other extreme, we could drain all circuits to
the old FA and change wiring all at once. However, this will cause
too much capacity to be lost, i.e., over 10 Thps of capacity. The

ACM SIGCOMM ’23, September 10-14, 2023, New York, NY, USA

Migration Switches Circuits Capacity Duration

HGRID 320-352 | 13728-26792 | 1.3T-6.3T | 4-9 months
SSW Forklift | 144-288 | 14140-40320 14T-16T 3-4 months
DMAG 48-64 1648-5576 | 0.2T - 0.5T | 1-2 week(s)

Table 1: Migration statistics per DC.

wiring is conducted in two different physical locations and can be
quite complex. Thus, the capacity lost may take weeks. Figuring
out the right amount of safe capacity that can be drained in a single
step is not trivial, as it relates to the affordable downtime, the pre-
dicted traffic demand, and the available capacity in other parts of the
network.

Consider traffic funneling. Even if we figure out the right number
of circuits to drain at once, deciding on which circuits is yet another
challenge. Let’s assume we drain circuits 1-4 in one step. However,
we cannot precisely control all circuits being drained at the same
time. When 3 out of the 4 circuits are drained, traffic from FSWs
will be all sent to the remaining circuit, causing severe congestion.
This is known as the upstream traffic funneling phenomenon. An
alternative is to horizontally drain circuits 1, 5, 9, and 13, that is,
the first ports in each plane. But similarly, all four circuits cannot
be drained at the exact same time. When 3 out of these 4 circuits
are drained, the downstream traffic from FA will be flooded to the
remaining circuit, causing downstream traffic funneling.

Consider multiple DCs. Even if we randomly pick four circuits in
each plane to drain, there would still be a problem. Assume DC1
and DC2 are migrated at the same time, and we drain circuits 1,3
in DC1 and circuits 102, 104 in DC2. By looking at DC1 alone, we
lose two circuits of capacity. However, DC1’s circuits 2 and 4 are
effectively lost as well. This is because their connected circuits in
DC2 are down. The inter-DC circuits become not usable.

Consider different meshing patterns. What’s worse, the old and
new connectivity patterns can change. Figure 2(c) shows two differ-
ent ways to interconnect SSW and the aggregation layer. The right
one has a smaller capacity per node so it does not have a one-to-one
mapping with the downstream planes.

Consider different generations. Finally, in production, multiple
generations of networks coexist. As shown in Figure 2(d), one DC
has four planes while the other DC has upgraded to eight planes.
Migrating them would need different plans and migrating them
together requires even more careful planning.

2.3 Challenges

As illustrated by the previous examples, we summarize the reasons
of the migration challenges below.

Complex and evolving DCN architecture. The DCN architecture
at Meta is more complicated than conventional Clos network topolo-
gies [37], as illustrated in §2.1. It contains eight layers and more than
nine types of switches. Moreover, the DCNs are evolving gradually.
Multiple generations of switches/circuits and routing protocols co-
exist in a single migration task. The mixture of topology and routing
leads to different equivalence of switches (§4.1). Simply applying
symmetry rules of [4] does not work. Besides, each region has its
own idiosyncrasies, leading to different constraints. For example,
some regions have tighter capacity buffers so we should be more

786

Zhao, et al.

careful to bring down switches. A region for hosting storage has a
different reliability requirement than a compute region. An intelli-
gent migration plan should take topology and service heterogeneity
into consideration.

Various operational constraints. Various operational requirements
exacerbate the network migration problem further. First, the demand
variance is not negligible since one migration task spans from weeks
to months (e.g., large migration tasks involving multiple DCs). On
the one hand, traffic and services will grow organically over time.
On the other hand, additional capacity should be preserved to ac-
commodate unexpected traffic spikes and rerouting due to failures.
The second important constraint is the availability of physical port
numbers on every switch. The total number of ports on the hardware
chassis is a hard constraint for the migration plan. We often need to
decommission some circuits first to free up the ports and repurpose
them for other connectivity. Such cases require extra steps in the
migration plan.

Large search space. In a real-world DCN with tens of thousands
of switches, one network migration task typically involves tens to
hundreds of switches per DC. The size of the search space (i.e., the
number of possible migration plans) is the number of permutations
of the switches to operate, which is super-exponential to the number
of switches to operate. For example, more than 100! (or 9.3 x 10157)
plans exist for changing 100 switches. It is difficult to solve the
problem with off-the-shelf optimization solvers [1, 2].

Efficiency requirement. In practice, the network conditions and
traffic are time-varying. A network migration plan should be gener-
ated efficiently to react to these dynamics. Additionally, operators
may need to tune the input constraints for a migration iteratively.
A fast generation of migration plans can significantly reduce such
trial-and-error process.

2.4 Network Migration Types

As discussed in §2.3, a network migration usually involves switches
and circuits on different layers and of different types. In this paper,
we share three large-scale migration types that have happened in the
past few years and have been supported by Klotski. Table 1 shows
the range of the number of switches, circuits, the affected capacity,
and the total duration of the migration per DC. Note that the statistics
of the table are for per DC and large migration tasks involve multiple
DCs. The table shows that these migrations are large-scale, affecting
a huge amount of capacity, and long lasting.

HGRID V1 — V2 Migration (Figure 3(a)). It is to replace all
switches in the HGRID layer with a new generation of hardware.
We need to remove/decommission the old switches first to create
space for the new switches in the same location. The purpose of this
migration type is to increase the inter-DC capacity for DCs within a
region. The challenges of this migration type include three aspects.
(i) It serves the inter-DC traffic within a region and every step results
in a large volume of capacity change. Thus, the planning needs to
be done more carefully. (ii) Each HGRID connects multiple DCs.
Thus, the action space is huge, because there are many choices of
which DCs to migrate at every step. (iii) Different DCs may have
different generations of topologies and connectivity patterns, which
further complicates the planning.

Klotski: Efficient and Safe Network Migration of Large Production Datacenters

ACM SIGCOMM ’23, September 10-14, 2023, New York, NY, USA

Sopt Switch and circuit set to be operated
Rs Type of switch s
HGRID — HGRID -) Ag Action type of switch s
v1 ‘ = \N W, Capacity of circuit ¢
o%o %o‘ ‘ % %‘ Demand set containing the source and target switches
, b and the forecasted traffic
‘ Fabric 1 “ ‘ Fabric 2 “ ‘ Fabric 3 “ ‘ Fabric 1 “ ‘ Fabric 2 “ ‘ Fabric 3 “ T(d,S,C,c) The traffic on C.lrcu_lt ¢ given the demand d, the switch
set S, and the circuit set C
(a) HGRID V1 — V2 Migration. A circuit path from the source switch ds, to the target
P(d,S,C) switch d;q; given the demand d, the switch set S, and
the circuit set C
L Action sequence where L; is the i-th operated switch
S; Switch set after action L;
C; Circuit set after action L;
0 Maximum utilization rate of each circuit
P; Maximum port number of switch s
Table 2: Key notations in the problem formulation.

HGRID

N
[B

[A At [AR

‘ Fabric 1 H ‘ Fabric 2 “ ‘ Fabric 3 H ‘ Fabric 1 “ ‘ Fabric 2 “ ‘ Fabric 3 H

(c) DMAG Migration.

Figure 3: Three network migration types at Meta.

SSW Forklift Migration (Figure 3(b)). The second migration type
has the largest scale. It upgrades all SSW switches in one DC to new-
generation hardware to provide more capacity and more advanced
routing capability. It is challenging because of its huge action space.
Each plane has 36 switches, and there are 4 or 8 planes. The number
of choices of the SSW numbers and which SSWs can be 2288 (or
5 x 1080),

DMAG Migration (Figure 3(c)). It is to introduce the new regional
aggregation, i.e., the DMAG layer, between FAUUs and EBs for
interconnecting regions in geographic proximity. This is a signifi-
cant topology change as the new layer can reduce traffic going into
the Backbone. The challenge for DMAG Migration is its complex
routing scheme. It interconnects EB and the FA layer, where the
backbone uses centralized traffic engineering and has much more
dynamic routing. Draining different circuits could cause different
impacts, depending on the upstream EB’s routing decision.

3 PROBLEM FORMULATION

A DCN can be abstracted as a graph where switches and circuits
are represented as nodes and edges, respectively. Each switch s has
a type Rs introduced in §2.1. Each circuit ¢ connects two switches
and has capacity W.. We then describe important definitions and the

787

mathematical problem formulation. Table 2 lists the key notations in
the problem formulation.

Action. A network migration task is done by a sequence of actions
operated on switches and corresponding circuits, called action se-
quence. Every switch to be operated on has its action type, which is
decided by its switch type R and the operation type (i.e., drain or
undrain). For example, the action type of draining one SSW switch
is different from that of draining one FADU switch or undraining
one SSW switch. Operating a switch back and forth is meaningless.
Thus, a switch can be operated at most once in one migration task.

Objective. The objective of the migration planning is to minimize
the operational cost, i.e., operational time. We remark that the opera-
tional cost mainly comes from two consecutive actions with different
action types. Different action types mean different switch types or
different operation types which cannot be done simultaneously. How-
ever, the switches with the same type are usually placed close at
Meta. Thus, actions with the same action type can be done by the
operators simultaneously with negligible extra operational cost. We
formulate the objective as Equation 1.

IL]-1

min Z 1(Ar, # Ar,) +1 (1)
i=1

{Lilo < i < |L[} = Sopt 2

Li # Li,V0 < i,j < |Sope| A1 # j 3)

3P(d, S;, Ci),¥d € D, Vi,

st(Ap, #AL, A1 <i<|L)Vi=|L|-1 (€))

Z T(d, S, Ci,c) /W, < 0,¥c € Ci, Vi,

deD

st(Ap, # A, A1 <i<|L)Vi=|L|-1 (5)

ACM SIGCOMM ’23, September 10-14, 2023, New York, NY, USA

Search Space

Zhao, et al.

Port
Constraints

Demand
Constraints

Forecasted
Traffic

$ ¥

Planner
with A%DP Algorithm

¥

Migration
Plan

-

Figure 4: Overview of Klotski.

Original Pruned Search Space
Topology by Symmetry and Locality
Target
Topology
> 1P VsesyYi

cicsre=s||ctar=s

st(Ap, # A, A <i<|L)Vi=]|L|-1 (6)

The constraints in Equation 2- 6 are explained below.

o Availability constraints (Equation 2- 3). An available action se-
quence L should contain only switches in Sy, and contain each
switch in Sop; once and only once.

o Demand constraints (Equation 4- 5). Multiple traffic demands
exist between RSWs or between RSW and EBB. For each demand
d, at least one path from the source ds,¢ to the target drq, should
exist. The utilization rate of each circuit, Y, 4¢p T(d, Si, Ci, ¢) /W,
should be lower than a threshold 0, to survive failures and absorb
traffic spikes. The demand constraints should be checked every
time the action type changes in the action sequence L and at the
end of L as consecutive actions with the same type are operated in
parallel.

e Port constraints (Equation 6). A switch has a certain number
of ports decided by its hardware configuration. The number of
switches one switch can connect with should not exceed its port
number. The port constraints need to be checked at the same time
as the demand constraints.

4 KLOTSKI DESIGN

Figure 4 shows an overview of Klotski. Klotski takes the network
topologies, forecasted traffic, and constraints as input. Klotski com-
putes the network migration plan in two steps. First, Klotski lever-
ages the inherent symmetry of DCNs and the locality of switches
to prune the search space. Then, it computes the optimal migration
plan with the lowest operational cost by its DP-based algorithm or
A* search algorithm.

4.1 Search Space Pruning

Naively, a brute-force approach needs to examine all possible action
sequences for a migration task to decide the one with the minimal
operational cost. However, it is impractical in production given
that one migration task usually involves hundreds of switches and
thousands of circuits. For example, there are 100! (or 9.3 x 10157)
possible sequences for changing 100 switches. It is impossible to go
through all of them in a reasonable amount of time. Klotski exploits
the inherent symmetry and locality of switches to reduce the search
space.

Here we follow the notion of equivalent switches and symme-
try blocks in Janus [4]. Briefly, switches that connect to the same
hosts and have the same routing table are equivalent, and equivalent

788

Symmetry

/ Block

Operation Block 0

68 &

Operation Block 1

s

HGRIDO

Operation Block 3

s oo

HGRID1

FAUU
FADU

FAUU
FADU

Figure 5: Example of symmetry blocks and operation blocks in
HGRID V1—-V2 Migration.

switches form a symmetry block. The operation order of equiva-
lent switches does not affect the cost and constraints of migration.
However, we find that there is little symmetry in Meta’s DCNs.
Each symmetry block consists of at most two switches for our three
real-world migration types.

In practice, we find that the locality of switches influences the
operational cost and constraint satisfiability. Specifically, we can
operate switches that are close to each other simultaneously with
little extra operational cost and little impact on constraints. Thus, we
merge symmetry blocks with locality into one operation block, to
further prune the search space. Switches in one operation block are
operated together. For example, in Figure 5, each FAUU symmetry
block contains two switches and each FADU symmetry block con-
tains one switch. We merge two FAUU symmetry blocks and four
FADU symmetry blocks into one operation block, and merge six
operations on symmetry blocks to one operation on the operation
block. The organization policy of operation blocks is based on our
operational experience and broadly tested over real-world topologies
and migrations. The details are described in §5.

4.2 Efficient Satisfiability Checking

Both the DP and A* planners need to check the satisfiability of the
practical constraints defined in §3. It is time-consuming as all con-
straints are checked on a large DCN topology with up to O(10,000)
switches and O(100, 000) circuits. We propose the notion of equiva-
lent states and the design of a compact topology representation to
speed up the checking.

Klotski: Efficient and Safe Network Migration of Large Production Datacenters

ACM SIGCOMM ’23, September 10-14, 2023, New York, NY, USA

last
action

DS
lyes

priority queue search state i

enumerate actions

Ao Ay
b 4

vV |Satisfy?
vl Y
Satisfy constraints? : ::_ " 2 %
¥ yes
put priority queue

| optimal action sequence |

extend states

Figure 6: The search process of A* search planner to find the optimal network migration plan.

DEFINITION 1. Equivalent states. States ny and ny are equiva-
lent if they have the same network topology.

Equivalent states can be derived by going through different action
sequences from the original topology. For example, assume there
are two action types, 0 and 1. Performing two action sequences
(0,0,1,1) and (0, 1,0, 1) on the same original topology will generate
the same topology, since they both do the actions 0 and 1 twice. The
satisfiability checking for equivalent states can be done only once
because the constraint satisfiability of a state is merely determined by
the current network topology, which is the same for equivalent states.
Thus, we use a cache table T¢ to store the mapping of topologies
and the checking results. Every time we need to do the satisfiability
checking, we can directly fetch the checking result if the topology is
in Te. Otherwise, we examine the constraints and store the checking
result in T¢ for future reference.

Compact topology representation. Due to the large scale of DCN
topologies, naively storing the topologies in T¢ incurs excessive
indexing overhead and memory footprint. Our important insight is
that equivalent states with different ordering of actions have the same
number of each action type. Thus, we design an ordering-agnostic
compact topology representation to represent a topology as V = (;),
where v; is the number of finished actions with action type i. For a
state n, V can be easily obtained by counting the action sequence L
of n in linear time, i.e., O(|L|), which is negligible in comparison
with the overhead of redundant satisfiability checking.

4.3 DP-based Planner

Dynamic programming (DP) is a classical method to solve combina-
torial optimization problems [3, 6]. We design a DP-based planner,
which is used in an early version of Klotski, to plan our network
migration. This planner achieves polynomial time complexity. The
key idea is that we can visit each intermediate topology only once
with the compact topology representation in a specific order of the
representation.

Specifically, the DP state f (\7, a) stores the minimal cost of chang-
ing the original topology to the current topology V with the last
action type a. We track the last action a to calculate the cost for its
successor states by comparing it with the next action type. For each
state, we enumerate all possible predecessor states, f (\7*, a*), that
satisty Equation 8 to get the minimal cost as shown in Equation 7.

f(V.a) = min f(V*,a") + {; Z¢ ‘ ™

=da

789

i+a

i=a

Vol e V* (8)

%
v = {z
1
Note that for a topology represented by V= {v;}, any predecessor
topology represented by Ve = {07} has a smaller total number
of actions, i.e., X, v} < Y v;. As a result, we propagate the states
based on Equation 7 in ascending order of the total number of
finished actions. We use an auxiliary array g(\7, a) to store the last
action type of the optimal action sequence to state V. The optimal
action sequence can be rebuilt by tracking from the target topology
backward to the original topology in g. Theorem 1 shows the time
complexity of the DP-based planner.

+1

THEOREM 1. Given that there are |A| action types, |L| actions to
do, |S| switches, and |C| circuits, the time complexity of DP-based
. L
planner is O(|A| - (%)W (Al + 18] + D).

The proof of Theorem 1 is in Appendix A.1. Briefly, the time
complexity of the DP-based planner is the product of the number
of DP states and the processing time for each state. The number

of DP states is bounded by |A| - (%)'A‘ according to Jensen’s

Inequality [20]. Each state requires finding the predecessor states and
performing constraint satisfiability checking, i.e., O(|A| + |S| + |C]).

4.4 A* Search Planner

Considering the scale of network migration tasks in production, it
is still time-consuming to run the DP-based planner even after the
search space is pruned and compacted. We design an A* search
planner based on A* algorithm [18] to further reduce the planning
time, and use a domain-specific priority function to guide the search
process.

Figure 6 shows the search process of our A* search planner. The
search process starts from the original network topology and takes
actions step by step until it arrives at the target topology. Each search
state can be specified by the operated action sequence from the
original state and the action type of the last finished action type.
For the current search state i, it generates the next state candidates
by applying every action type to the current topology. The new
topologies that meet the demand constraints and port constraints are
regarded as feasible state candidates and will be put into a priority
queue. Meanwhile, our A* search planner computes priorities for
the newly added state candidates and picks the one with the highest
priority in the priority queue as the next search state.

ACM SIGCOMM ’23, September 10-14, 2023, New York, NY, USA

(0,0) (0,0)
Q
(1.0) NGE)
Q O
(2.0) (2,0) R
@ Q@
2.1
Q
optimal optimal (22)

(a) DP Planner.

(b) A* Planner.

Figure 7: Comparison of Klotski planners. Nodes represent
states and edges represent actions. Tuples of two numbers are
the compact topology representations.

Priority design. In A* algorithm, the priority f(n) represents the
estimated cost of a search path that goes through the current state n.
f(n) is composed of two parts, i.e., f(n) = g(n) + h(n), where g(n)
is the existing cost from the original state to the current state n and
h(n) is an admissible heuristic function—it is a lower bound on the
cost-to-go from the state n to the target state. A* is guaranteed to
find the optimal solution if and only if h(n) never overestimates the
cost-to-go. In our problem, smaller f(n) represents a higher priority.
g(n) is calculated according to the cost function (Equation 1), where
L is the operated action sequence of state n.

The design of h(n) is important to the performance of A* algo-
rithm. We choose the number of remaining action types as h(n)
Such future cost estimation design has two principal benefits. First,
it guarantees the optimality of the final result. It is obvious that
h(n) < h*(n) holds for any state n, where h*(n) represents the ac-
tual future cost of n, since the number of action type changes in
an action sequence is at least the number of action types. Thus, the
algorithm is guaranteed to return the optimal result [18]. Second, the
computation of h(n) is efficient. h(n) is computed for every state
candidate during the search process. Considering the number of state
candidates to check, h(n) needs to be computed efficiently. As the
total number of actions for each type is given and the number of
finished actions for each type can be stored during the search, h(n)
can be easily obtained by getting the actions to be done and counting
the number of their types.

In practice, we found that many different search states usually
have the same value of f(n), especially at the beginning of the search.
To differentiate these states, we use the number of finished actions
as the secondary priority. Intuitively, the search states with more
finished actions should have a higher priority, since these states are
usually closer to the target state and have a higher probability to
derive the optimal solution. Theorem 2 shows the time complexity
of the A* search planner.

THEOREM 2. Given that there are |A| action types, |L| actions
to do, |S| switches, and |C| circuits, the time complexity T of the A*
search planner satisfies T = Q(|L| - (|A] +|S|+]C))) = O((%)'A‘ .
(1Al + 1] +1CD).

790

Zhao, et al.

The proof of Theorem 2 is in Appendix A.2. Briefly, the time
complexity of the A* search planner is the product of the number of
search states and the processing time for each state. The processing
time for each state is also O(|A| + |S| + |C|). Ideally, the planner can
directly find the optimal solution by visiting only |L| states. In the
worst case, the planner has to search all states, i.e., up to (%) A1,
A* VS DP. The A* search planner runs faster than the DP-based
planner in practice. This is because the A* search planner returns the
optimal solution once it visits the target state, and it may visit fewer
states than the DP-based planner. We use an example to illustrate the
benefit of A* search in Figure 7. In this example, there are two action
types and four actions. The A* search planner visits five states and
performs four satisfiability checks, while the DP-based planner visits
all nine states and performs eight satisfiability checks. However, it is
important to note that although A* is typically faster by avoiding the
expansion of all nodes, in the worst-case scenario it may still visit
every node in the search tree.

S IMPLEMENTATION

System-level implementation. At Meta, we have productionized
Klotski by integrating it into EDP-Lite (Engineering Design Pack-
age) pipeline, which provides guidance on network topology mi-
grations. For network migration, EDP-Lite pipeline takes Network
Product Definition (NPD) format original/target topologies and de-
mand information as inputs. NPD is a generic data structure used
at Meta to define high-level properties of network topologies. NPD
divides DCNSs into six parts and describes them separately for scala-
bility. These six parts are Fabric, HGRID, MA, EB, DR, and BB. In
each part, it records the switches based on their roles and positions,
and the way these switches are interconnected. Besides, NPD also
contains information about migration phases and hardware. After
the pipeline receives NPD data, it converts them into topologies and
passes the topologies to Klotski. When the planning is done, Klotski
returns an ordered list of topology phases. Each phase corresponds
to one migration step.

Organization policy for operation blocks. We design the organiza-
tion policy based on the layout and type of switches and circuits. For
the HGRID layer, one grid contains multiple near symmetry blocks
and is set as one operation block. SSWs are asymmetric to each other.
We split SSWs on a plane into several operation blocks, considering
the traffic demand. For DMAG migration, we need to drain the cir-
cuits between EBs and FADUs, and undrain MAs. To prune action
space, we group MAs/circuits by the same type of switches they
connect. As one EB connects more switches in practice, we group
the MAs/circuits by EBs to release more ports with one action.

Klotski planner. As shown in Figure 4, Klotski planner takes the
original and target topologies, forecasted traffic, and constraints as
input and outputs the migration plan. Following previous work [54],
we focus on macro-scale network behavior, e.g., the traffic and ca-
pacity of circuits, rather than micro-scale network behavior, e.g., net-
work congestion. We use the equal-cost multi-path (ECMP) routing
policy. For efficient satisfiability checking, we utilize an unordered
map to store the representation-satisfiability pair, (\7, 0/1).

Cost function. In practice, the total time of operating one opera-
tion block is slightly longer than that of operating one switch. The

Klotski: Efficient and Safe Network Migration of Large Production Datacenters

I

Il MRC
EEE Janus

I Klotski-DP
H Klotski-A*

w

Normalized Cost
= N

o

C D E
(a) Optimality of Plan Cost.

Normalized
Planning Time

ACM SIGCOMM ’23, September 10-14, 2023, New York, NY, USA

400+

Il Klotski-DP
B Klotski-A*

200

(b) Normalized Planning Time.

Figure 8: Compare Klotski with baselines under various topology sizes.

Topology Switches Circuits | Actions
A ~ 40 ~ 80 ~ 50

B ~ 100 ~ 600 ~ 100

C ~ 600 ~ 8,000 ~ 300

D ~ 1,000 ~ 20,000 ~ 300

E ~ 10,000 | ~ 100,000 ~ 700

E - DMAG | ~ 10,000 | ~ 100,000 ~ 100
E-SSW ~ 10,000 | ~ 100,000 ~ 300

Table 3: Configurations for each topology.

operational cost is based on action types, operation blocks, and the
proficiency of operators. The cost of operating x switches within
one operation block can be formulated approximately as a linear
function, feost(x) =1+ a(x — 1), where a € [0,1]. « is set to 0 by
default. We extend Klotski to handle the generalized cost function.
The main idea is that two adjacent actions with different types are
operated serially, while two adjacent actions with the same type can
be operated simultaneously with extra cost « for each action. For
Klotski-A*, we use Equation 9 to calculate h(n), where n is the
current search state, A is the action set, and N, is the remaining
number of actions with type a.

2,

acAAN,>0

6 EVALUATION

We first evaluate the optimality and efficiency of Klotski compared
with state-of-the-art planners over different sizes of topologies. We
then show the generality of Klotski over different migration types.
The results show that Klotski can always find the optimal solution
and is up to 381X faster than baselines. We also investigate the design
choices of Klotski.

h(n) = 1+a(Ng—-1) 9)

6.1 Methodology

Topology. We evaluate Klotski on five production network topolo-
gies with different scales, i.e., A, B, C, D, and E. These five topolo-
gies are listed in Table 3 in ascending order of topology sizes, with
40-10,000 switches and 80-100,000 circuits. The circuit capacity is
in the unit of Tbps. E is comparable to Meta’s DCN. These topolo-
gies are representative of the migration cases that Klotski handled in
over 100 DCs at Meta.

Traffic. The traffic demand is forecasted based on historical data
collected by Meta’s DCNGs, reflecting the average traffic requirements

791

in the near future. There are three kinds of source and target pairs,
i.e., RSW to EBB, EBB to RSW, and RSW to RSW. The traffic is
typically hundreds of Tbps.

Constraints. In terms of demand constraints, the maximum utiliza-
tion rate 0 is set to be 75% by default, according to our practical
experience. We also investigate the impact of 6 by changing it from
55% to 95% in §6.4. In the terms of port constraints, the maximum
port number P varies according to topologies and real-world config-
urations.

Network migrations. We evaluate Klotski on all three migration
types in §2.4. Topologies A — E perform HGRID V1—V2 Migration,
and replace all FADUs and FAUUs. The number of actions ranges
from 50 to 700. E-DMAG performs DMAG Migration, which drains
all circuits between EBs and FADUs, and adds MAs and related
circuits. E — SSW performs SSW Forklift Migration, which takes
about 300 actions.

Baselines. We compare two versions of Klotski with two state-of-
the-art (SOTA) baselines. Klotski-DP uses the DP-based planner
in Klotski, while Klotski-A* uses the A* search planner. Planners
that maximize the minimum residual capacity (MRC) use a greedy
strategy for each step of the migration plan [37]. Janus leverages
the intrinsic symmetry of DCNs to prune the search space [4]. We
define the superblock in Janus as the operation block in Klotski.

Evaluation metrics. To compare the optimality and efficiency of
planners, we measure the minimum cost each planner can get and
the planning time to find the optimal plan. All planners run at most
24 hours as more time for planning does not meet the efficiency
requirement in production. We normalize the cost by the optimal
cost of every migration task, and normalize the planning time by
that of Klotski-A*. While we report normalized time for privacy
concerns, Klotski-A* uses less than 4 minutes to generate a plan for
the largest topology.

6.2 Scalability

We evaluate Klotski over topologies A—E with up to 10, 000 switches
under HGRID V1 — V2 Migration.

Optimality. Figure 8(a) shows the normalized minimum cost each
planner can get. MRC uses a greedy strategy and cannot find the op-
timal solution for all evaluated topologies. The other three planners
can always find optimal solutions.

ACM SIGCOMM ’23, September 10-14, 2023, New York, NY, USA

3 Il MRC I Klotski-DP
‘g I Janus BB Klotski-A*
O 2]
©
@

N
N .
2
. %
E E-DMAG E-SSW

(a) Optimality of Plan Cost.

Normalized

Zhao, et al.

104
Il MRC I Klotski-DP
2 71 . I Janus M Klotski-A*
E
o 41
£ 3
3 2]
o 14__ ____________________ N
: %t
E-DMAG E-SSW

(b) Normalized Planning Time.

Figure 9: Compare Klotski with baselines under various migration types. A cross indicates that the planner cannot plan for the

migration task.

2y B Klotski w/o OB
I Klotski w/o A*

Il Klotski w/o ESC
Il Klotski-A*

Normalized Cost

C D E
(a) Optimality of Plan Cost.

Normalized
Planning Time

Il Klotski w/o OB
[Klotski w/o A*

I Klotski w/o ESC

20009 B Klotski-A*

-
o
o
o

C

(b) Normalized Planning Time.

D E

Figure 10: Impact of Klotski design choices. A cross indicates that no available solution is found within 24 hours.

Efficiency. Figure 8(b) demonstrates the planning time of each plan-
ner normalized by that of Klotski-A*. The absolute planning time
increases from A to E. The planning times of MRC and Janus are
7.1 — 262.6x and 8.4 — 380.7% slower than Klotski-A*, due to three
reasons. First, these two planners need to preprocess all available
action combinations, which is time-consuming. Second, there is
little symmetry in the complex migration tasks we study that Janus
can leverage. Third, Janus traverses the entire search space, while
Klotski-A* returns once it visits the target state [18]. Klotski-A* is
1.7 — 3.8% faster than Klotski-DP. Intuitively, Klotski-A* is intelli-
gently guided by the priority and gets to the target topology without
visiting all intermediate topologies. However, Klotski-DP has to visit
all intermediate topologies to calculate the DP function correctly.
We remark that reducing the planning time from hours to minutes
is important in practice for two reasons. First, before the migration,
operators need to adjust the migration configurations interactively
based on the planning solutions for each migration. Second, the
traffic demand varies from time to time and we need to re-run the
planner with the updated demand during the migration.

6.3 Generality

To demonstrate the generality of Klotski over different migration
types, we compare all planners over E, E — DMAG, and E — SSW.
These three migration tasks are only different in migration types.
The evaluation results are shown in Figure 9. Klotski-A* is up to
7.1x faster than MRC, 8.4x faster than Janus, and 2.1X faster than
Klotski-DP. Note that MRC and Janus cannot handle migration types
that change the topology (E-DMAG), while Klotski is capable of
planning all types of migrations, showing the generality of Klotski.

792

6.4 Analysis of Klotski

Impact of Klotski design. We compare Klotski-A* with three
variants, Klotski-A* without considering operation blocks (Klot-
ski w/o OB), Klotski-A* without A* algorithm (Klotski w/o A*),
and Klotski-A* without efficient satisfiability checking (Klotski w/o
ESC), as shown in Figure 10.

Klotski w/o OB fails to find available solutions for large topolo-
gies, C — E, and takes 4.4 — 26.7x longer time on small topologies.
These results show that search space pruning with symmetry and
locality is essential for efficiency. Compared with Klotski w/o A*,
the speedup of Klotski-A* ranges from 7x to 1456.5X. The priority
function of A* algorithm guides Klotski-A* to visit the states that
have high probabilities to form the optimal solution first. Besides,
Klotski-A* only explores part of the search space, while Klotski
w/o A* needs to explore the whole search space. Klotski-A* runs
1.1 — 3.5x faster than Klotski w/o ESC, showing the benefit of re-
ducing the duplicated satisfiability checking, especially on large
topologies. For small topologies, almost no equivalent states are
checked repeatedly, leading to small speedups.

Impact of operation blocks. We evaluate Klotski with different
organization policies for operation blocks. By merging or splitting
the default operation blocks, we get five settings in Figure 11. The
factors mean the number of operation blocks compared with the
default setting described in §5.

The minimum cost is negatively related to the number of opera-
tion blocks. For large operation blocks, lots of switches/circuits are
operated together, which makes the constraints harder to meet. As
a result, no available solution exists in 0.25 X E. In contrast, small
operation blocks mean finer-grained actions and may reduce the

Klotski: Efficient and Safe Network Migration of Large Production Datacenters

-

N B O 0O

.\0—0—0

Minimum Cost

%.25x 0.5x 1x 2x
Operation Blocks

4x

(a) Minimum Cost.

I Klotski-DP
T Klotski-A*

N

Normalized
Planning Time

o

0.25x0.5x 1x
Operation Blocks

2x 4x

(b) Normalized Planning Time.

Figure 11: Impact of operation blocks. A cross indicates that the
migration task has no available action sequence.

-

ON P~ O O®O

Optimal Cost

55 65 75 85 95
Utilization Rate Bound (%)

(a) Optimal Cost.

[
[

Klotski-DP
Klotski-A*

Normalized
Planning Time
o=~ N W b

55 65 75 85 95
Utilization Rate Bound (%)

(b) Normalized Planning Time.

Figure 12: Impact of utilization rate bound.

Klotski-DP
Klotski-A*

N

N>
Normalized
Planning Time
N

o

0 02 04 06 08 1 0 02040608 1
a a

(a) Optimal Cost. (b) Normalized Planning Time.

Figure 13: Impact of the cost function.

minimum cost. Besides, more operation blocks increase the exact
time to minimum cost. Thus, the organization policy brings a bal-
ance between optimality and efficiency. Klotski-A* is always faster
than Klotski-DP and the speedups are 1.1 — 1.8x. This is because
A* algorithm visits fewer states than DP algorithm. Additionally,
efficient satisfiability checking ensures that Klotski-A* performs no
worse than Klotski-DP even in extreme settings.

Impact of demand constraints. We also study the impact of utiliza-
tion rate bound for demand constraints as shown in Figure 12. Intu-
itively, a lower utilization rate bound means more strict constraints,
and fewer switches/circuits can be drained together. Therefore, the
optimal cost has a negative relationship with the utilization rate
bound. Under higher utilization rate bound, i.e., looser constraints,
Klotski-A* visits only a few states and achieves up to 3.2x speedup
over Klotski-DP.

Impact of the cost function. To investigate the impact of the cost
function, we vary the @ from 0 to 1 and compare Klotski-A* with
Klotski-DP on topology E, as shown in Figure 13. As expected, the
optimal cost increases when « gets larger and both planners can find
the optimal solutions. Klotski-A* has shorter planning time than
Klotski-DP for all tasks.

793

ACM SIGCOMM ’23, September 10-14, 2023, New York, NY, USA

7 DEPLOYMENT EXPERIENCE

Klotski has been deployed at Meta since 2020 to generate DCN
migration plans for over 100 datacenters within 20 regions. Klotski
serves tens of migration tasks every day. We are actively exploring
its extensions to other networks such as Backbone and PoPs. In this
section, we share our deployment experience.

7.1 Routing Configurations and Traffic Forecasts

In some production scenarios, network operators need to create
special routing configurations during the migration process to utilize
the special intermediate topology. For example, during the HGRID
V1 — V2 Migration, we can no longer rely on pure ECMP to
split the traffic among all switches. This is because an HGRID V1
aggregated switch has a different capacity with HGRID V2: they
contain a different number of sub-switches and each sub-switch has
a different forwarding capability. The relative number between the
two types of switches is also changing as the migration progresses.
In one outage, we experienced high packet loss even when draining
a single link in V1. This is because another box had been upgraded
to V2. The downstream systems performed ECMP to both HGRIDs.
The old generation could not provide sufficient capacity even with
the minimum unit of capacity loss. To handle this challenge, network
operators created temporary routing configurations to balance the
traffic between HGRID V1 and V2, and updated them according to
the migration plan. We are currently extending Klotski to incorporate
more flexible routing configurations into the problem formulation.

Another experience is that we need to incorporate traffic demand
forecasts into the migration process. We overlooked the demand
increase initially as it is usually only needed for long-term planning.
However, during deployment, we found some migrations can easily
take more than one month. The traffic in a region or for a service is
possibly changing drastically during this period. For example, if the
traffic demand increases by ten percent after the first two migration
steps, then the rest migration steps would fail to satisfy demand
constraints. Therefore, we run the forecast after each migration
step. Consequently, we also re-run the migration planning with the
updated demand and update the migration plan.

7.2 Incorporating Operational Constraints during
Migration
Besides the standard factors such as traffic demand and port number,

there are other operational constraints that we have to handle when
using Klotski in production.

Failures during operation duration. Klotski only generates the log-
ical action plan, which needs to be translated to actual configuration
changes and to be pushed to switches. The configuration and push
pipeline may experience failure due to complex dependency on other
systems. For example, an undrain step may be unsuccessful if the
network management system experiences an outage. If performing
another drain before the recovery of the previous undrain, it could
result in capacity insufficiency. Thus, we add extra audits and safety
checks to Klotski’s plans during operation.

Simultaneous operations. While Klotski is used to handle large-
scale migration, there is other routine maintenance that is not con-
trolled by Klotski, such as firmware upgrade and device rebuild.

ACM SIGCOMM ’23, September 10-14, 2023, New York, NY, USA

These changes do not require physical changes to the network but
they could also cause downtime to the switches. Therefore, it is
necessary for Klotski to generate plans according to the real-time
topology changes, and as a result, it requires Klotski to generate
results efficiently.

Space and power constraints. The old and new hardware genera-
tions often share the same space and power. In some cases, there are
additional space and power available to support transient state but
that could be limited. We consider such constraints when generating
intermediate states in Klotski.

Unexpected traffic surge. As shown in §2, these operations can
take days to weeks so we need to accommodate unexpected ser-
vice behavior changes. For example, in one incident, warm storage
decided to change its backup placement strategy during a network
migration. That caused days of traffic spikes. Meanwhile, Klotski’s
migration reduced the capacity and worsens the scenario. Thus, ser-
vice activity should be considered if it could result in large changes
in traffic patterns. We re-run Klotski to adapt the migration plan to
the changes.

Traffic funneling. As discussed in §2.2, traffic funneling happens
during migration due to asynchronous operations. To handle this
phenomenon, Klotski increases the utilization of related circuits
while planning. Meanwhile, we are designing better affinity rules.

OPEX savings. Finally, physical migration requires sending work-
force to the site to perform manual work. Different sequences of
steps could have different costs in terms of human efficiency. Indeed,
we are adding a cost model to Klotski which can optimize for OPEX
spending.

7.3 Classical Methods vs. DL Methods

Deep learning (DL) has been increasingly applied to planning prob-
lems [7, 13, 23, 54]. We worked with top DL researchers and en-
gineers at Meta for more than two years. We explored various DL
methods with cutting-edge technologies.

For the planning process, we explored three directions. First, we
employed reinforcement learning (RL) [30, 43] including DQN [30],
PPO [35], and A2C [29], to solve this decision-making problem.
To embed the DCN topology, we leveraged graph neural network
(GNN) [34, 45], e.g., GCN [22] and GAT [42]. Additionally, we
explored domain-specific techniques, e.g., link-node transforma-
tion [54] and curiosity-driven reward [36, 52], to assist the training
process. Second, we tried transfer learning [44, 46] by training the
GNN representation module with labeled migration tasks and trans-
ferring the pre-trained module to predict the next action. Third, we
also leveraged the pre-trained GNN to score candidate actions and
guide the A* search process.

However, we met the following practical obstacles, so that Klot-
ski stayed with classical methods in our deployment. (i) Scalability.
Although DL can solve small-scale migrations, it is difficult to gen-
eralize the DL model for large-scale migrations in production. Most
DL models we have tried cannot even find feasible solutions for
large-scale migrations. (ii) Efficiency. Training a DL model takes
hours even on small topologies while Klotski only takes minutes on
large topologies. For economic efficiency, DL methods require ex-
pensive GPUs while Klotski just uses cheap CPUs. (iii) Reliability.

794

Zhao, et al.

As randomness exists commonly in DL, it can not always get the
optimal solution. On the contrary, Klotski with classical methods
guarantees the optimality. Most of the above obstacles remain open
problems in the DL field. Yet, the exploration has not been hindered
and we will report back to the community in the future.

8 RELATED WORK

Network topology expansions. Many efforts have been proposed
to support DCN topology expansions. Iteratively-designed DCN
structures [15-17, 24, 25] support coarse-grained expansions. Fine-
grained incremental expanders [5, 11, 38, 41] have high complexity.
Optimization-based methods [8, 9, 50] are weak in scalability or re-
quire additional input. FatClique [49] is designed for lower lifecycle
management complexity including expansions. Klotski is a general
approach for a wide range of network migration types.

Network migration planners. Prior work [19, 21, 26, 33] has ex-
plored planning network migrations for only specific switch config-
urations. Janus [4] exploits symmetry of DCN topologies to plan
network migrations, which is the closest work to Klotski. Janus
assumes the symmetry is not changed during migration which does
not hold for our DMAG migration. Klotski does not have this as-
sumption and can handle more general migrations. Moreover, there
is little symmetry for complex DCN topologies and migration tasks
at Meta, making Janus inefficient. Klotski further considers DCN
locality to speed up the planning.

Practical network management systems. Network management
is a common challenge for large enterprises. Some works [27, 31,
39, 53] propose abstractions for network lifecycle management.
Govindan et al. [14] focus on network availability during network
migrations and conclude some design principles at Google. Klot-
ski focuses on planning network migrations, which is essential in
network management.

9 CONCLUSION

In this paper, we present Klotski, a production system for efficient
and safe DCN migration at Meta. Klotski formulates the migration
planning with domain-specific constraints for safety. Besides, Klot-
ski leverages the inherent symmetry and locality of DCNs to prune
the search space, and the power of informed search to find the op-
timal plans for efficiency. The evaluation results demonstrate that
Klotski realizes efficient and safe DCN migration for production
network topologies. Klotski has been deployed at Meta since 2020 to
generate migration plans for over 100 datacenters within 20 regions.

This work does not raise any ethical issues.

Acknowledgments. We sincerely thank the anonymous reviewers
for their valuable feedback on this paper. We acknowledge Haowen
Liu for his help with the experiments. This work was supported
by the National Key Research and Development Program of China
under the grant number 2022YFB4500700, the National Natural
Science Foundation of China under the grant number 62172008 and
the National Natural Science Fund for the Excellent Young Scientists
Fund Program (Overseas). Xin Jin, Xuanzhe Liu and Ying Zhang
are the corresponding authors. Yihao Zhao, Xuanzhe Liu, and Xin
Jin are also with the Key Laboratory of High Confidence Software
Technologies (Peking University), Ministry of Education.

Klotski: Efficient and Safe Network Migration of Large Production Datacenters

REFERENCES

[1]
[2]
[3]

[4]

[5

[6]

[7]
[8]

[9]

[10]

[11]
[12]

[13

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]
[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

2023. CPLEX optimizer. https://www.ibm.com/analytics/cplex-optimizer.
2023. Gurobi solver. https://www.gurobi.com/.

Hassan AbouEisha, Talha Amin, Igor Chikalov, Shahid Hussain, and Mikhail
Moshkov. 2019. Extensions of dynamic programming for combinatorial optimiza-
tion and data mining. Springer.

Omid Alipourfard, Jiaqi Gao, Jeremie Koenig, Chris Harshaw, Amin Vahdat, and
Minlan Yu. 2019. Risk based planning of network changes in evolving data centers.
In ACM SOSP.

Cristébal Camarero, Carmen Martinez, and Ramén Beivide. 2017. Random folded
Clos topologies for datacenter networks. In IEEE HPCA.

Robert L Carraway, Thomas L Morin, and Herbert Moskowitz. 1989. Generalized
dynamic programming for stochastic combinatorial optimization. In Operations
Research.

Xinyun Chen and Yuandong Tian. 2019. Learning to perform local rewriting for
combinatorial optimization. In NIPS.

Andrew R Curtis, Tommy Carpenter, Mustafa Elsheikh, Alejandro Lopez-Ortiz,
and Srinivasan Keshav. 2012. Rewire: An optimization-based framework for
unstructured data center network design. In JEEE INFOCOM.

Andrew R Curtis, Srinivasan Keshav, and Alejandro Lopez-Ortiz. 2010. LEGUP:
Using heterogeneity to reduce the cost of data center network upgrades. In ACM
CoNEXT.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

Michael Dinitz, Michael Schapira, and Asaf Valadarsky. 2017. Explicit expanding
expanders. In Algorithmica.

Dominik Durner, Viktor Leis, and Thomas Neumann. 2021. JSON tiles: Fast
analytics on semi-structured data. In ACM MOD.

Maxime Gasse, Didier Chételat, Nicola Ferroni, Laurent Charlin, and Andrea
Lodi. 2019. Exact combinatorial optimization with graph convolutional neural
networks. In NIPS.

Ramesh Govindan, Ina Minei, Mahesh Kallahalla, Bikash Koley, and Amin Vahdat.
2016. Evolve or die: High-availability design principles drawn from googles
network infrastructure. In ACM SIGCOMM.

Chuanxiong Guo, Guohan Lu, Dan Li, Haitao Wu, Xuan Zhang, Yunfeng Shi,
Chen Tian, Yongguang Zhang, and Songwu Lu. 2009. BCube: A high performance,
server-centric network architecture for modular data centers. In ACM SIGCOMM.
Chuanxiong Guo, Haitao Wu, Kun Tan, Lei Shi, Yongguang Zhang, and Songwu
Lu. 2008. Dcell: A scalable and fault-tolerant network structure for data centers.
In ACM SIGCOMM.

Deke Guo, Tao Chen, Dan Li, Mo Li, Yunhao Liu, and Guihai Chen. 2012.
Expandable and cost-effective network structures for data centers using dual-port
servers. In IEEE TC.

Peter E Hart, Nils J Nilsson, and Bertram Raphael. 1968. A formal basis for the
heuristic determination of minimum cost paths. In IEEE G-SSC.

Chi-Yao Hong, Srikanth Kandula, Ratul Mahajan, Ming Zhang, Vijay Gill, Mohan
Nanduri, and Roger Wattenhofer. 2013. Achieving high utilization with software-
driven WAN. In ACM SIGCOMM.

Johan Ludwig William Valdemar Jensen. 1906. Sur les fonctions convexes et les
inégalités entre les valeurs moyennes. In Acta mathematica.

Xin Jin, Hongqgiang Harry Liu, Rohan Gandhi, Srikanth Kandula, Ratul Mahajan,
Ming Zhang, Jennifer Rexford, and Roger Wattenhofer. 2014. Dynamic scheduling
of network updates. In ACM SIGCOMM Computer Communication Review.
Thomas N Kipf and Max Welling. 2016. Semi-supervised classification with
graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

Wouter Kool, Herke van Hoof, and Max Welling. 2019. Attention, learn to solve
routing problems!. In /CLR.

Dan Li, Chuanxiong Guo, Haitao Wu, Kun Tan, Yongguang Zhang, and Songwu
Lu. 2009. FiConn: Using backup port for server interconnection in data centers.
In [EEE INFOCOM.

Zhenhua Li, Zhiyang Guo, and Yuanyuan Yang. 2016. BCCC: An expandable
network for data centers. In JEEE/ACM TON.

Honggiang Harry Liu, Xin Wu, Ming Zhang, Lihua Yuan, Roger Wattenhofer, and
David Maltz. 2013. zUpdate: Updating data center networks with zero loss. In
ACM SIGCOMM.

Honggiang Harry Liu, Xin Wu, Wei Zhou, Weiguo Chen, Tao Wang, Hui Xu, Lei
Zhou, Qing Ma, and Ming Zhang. 2018. Automatic life cycle management of
network configurations. In ACM SIGCOMM SelfDN.

Ryan Marcus, Parimarjan Negi, Hongzi Mao, Nesime Tatbul, Mohammad Al-
izadeh, and Tim Kraska. 2021. Bao: Making learned query optimization practical.
In ACM MOD.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Tim-
othy Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. 2016. Asyn-
chronous methods for deep reinforcement learning. In JCML.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg

795

[31]

[32]

[33]

[34]

[35]

[36]

[38]
[39]

[40]

[41]
[42]

[43]

[44]

[45]
[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

ACM SIGCOMM ’23, September 10-14, 2023, New York, NY, USA

Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen
King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis. 2015.
Human-level control through deep reinforcement learning. Nature (2015).
Jeffrey C Mogul, Drago Goricanec, Martin Pool, Anees Shaikh, Douglas Turk,
Bikash Koley, and Xiaoxue Zhao. 2020. Experiences with modeling network
topologies at multiple levels of abstraction. In USENIX NSDI.

Gordon D Plotkin, Nikolaj Bjgrner, Nuno P Lopes, Andrey Rybalchenko, and
George Varghese. 2016. Scaling network verification using symmetry and surgery.
In POPL.

Mark Reitblatt, Nate Foster, Jennifer Rexford, Cole Schlesinger, and David Walker.
2012. Abstractions for network update. In ACM SIGCOMM Computer Communi-
cation Review.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and
Gabriele Monfardini. 2008. The graph neural network model. IEEE TNNLS
(2008).

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
2017. Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347
(2017).

Pier Giuseppe Sessa, Maryam Kamgarpour, and Andreas Krause. 2022. Effi-
cient model-based multi-agent reinforcement learning via optimistic equilibrium
computation. In /CML.

Arjun Singh, Joon Ong, Amit Agarwal, Glen Anderson, Ashby Armistead, Roy
Bannon, Seb Boving, Gaurav Desai, Bob Felderman, Paulie Germano, Anand
Kanagala, Hong Liu, Jeff Provost, Jason Simmons, Eiichi Tanda, Jim Wanderer,
Urs Holzle, Stephen Stuart, and Amin Vahdat. 2015. Jupiter rising: A decade of
clos topologies and centralized control in google’s datacenter network. In ACM
SIGCOMM.

Ankit Singla, Chi-Yao Hong, Lucian Popa, and P Brighten Godfrey. 2012. Jellyfish:
Networking data centers randomly. In USENIX NSDI.

Yu-Wei Eric Sung, Xiaozheng Tie, Starsky HY Wong, and Hongyi Zeng. 2016.
Robotron: Top-down network management at facebook scale. In ACM SIGCOMM.
EJ Truesdell, Jason Brent Smith, Sarah Mathew, Gloria Ashiya Katuka, Amanda
Griffith, Tom McKlin, Brian Magerko, Jason Freeman, and Kristy Elizabeth Boyer.
2021. Supporting computational music remixing with a co-creative learning
companion. In ICCC.

Asaf Valadarsky, Gal Shahaf, Michael Dinitz, and Michael Schapira. 2016.
Xpander: Towards optimal-performance datacenters. In ACM CoNEXT.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, Yoshua Bengio, et al. 2017. Graph attention networks. STAT (2017).
Tongzhou Wang, Simon S Du, Antonio Torralba, Phillip Isola, Amy Zhang, and
Yuandong Tian. 2022. Denoised mdps: Learning world models better than the
world itself. In ICML.

Xiao Wang, Haoqi Fan, Yuandong Tian, Daisuke Kihara, and Xinlei Chen. 2022.
On the importance of asymmetry for siamese representation learning. In /EEE
CVPR.

Xiyuan Wang and Muhan Zhang. 2022. How powerful are spectral graph neural
networks. In JCML.

Karl Weiss, Taghi M Khoshgoftaar, and DingDing Wang. 2016. A survey of
transfer learning. Journal of Big data (2016).

Jinfeng Wen, Zhenpeng Chen, Yi Liu, Yiling Lou, Yun Ma, Gang Huang, Xin
Jin, and Xuanzhe Liu. 2021. An empirical study on challenges of application
development in serverless computing. In ACM ESEC/FSE.

Yiting Xia, Ying Zhang, Zhizhen Zhong, Guanqing Yan, Chiunlin Lim, Satya-
jeet Singh Ahuja, Soshant Bali, Alexander Nikolaidis, Kimia Ghobadi, and Manya
Ghobadi. 2021. A social network under social distancing: risk-driven backbone
management during COVID-19 and beyond. In USENIX NSDI.

Mingyang Zhang, Radhika Niranjan Mysore, Sucha Supittayapornpong, and
Ramesh Govindan. 2019. Understanding lifecycle management complexity of
datacenter topologies. In USENIX NSDI.

Shizhen Zhao, Rui Wang, Junlan Zhou, Joon Ong, Jeffrey C Mogul, and Amin
Vahdat. 2019. Minimal rewiring: Efficient live expansion for clos data center
networks. In USENIX NSDI.

Yihao Zhao, Ruihai Wu, and Hao Dong. 2020. Unpaired image-to-image transla-
tion using adversarial consistency loss. In ECCV.

Lulu Zheng, Jiarui Chen, Jianhao Wang, Jiamin He, Yujing Hu, Yingfeng Chen,
Changjie Fan, Yang Gao, and Chongjie Zhang. 2021. Episodic multi-agent rein-
forcement learning with curiosity-driven exploration. In NeurIPS.

Yang Zhou, Ying Zhang, Minlan Yu, Guangyu Wang, Dexter Cao, Eric Sung,
and Starsky Wong. 2022. Evolvable network telemetry at Facebook. In USENIX
NSDI.

Hang Zhu, Varun Gupta, Satyajeet Singh Ahuja, Yuandong Tian, Ying Zhang,
and Xin Jin. 2021. Network planning with deep reinforcement learning. In ACM
SIGCOMM.

https://www.ibm.com/analytics/cplex-optimizer
https://www.gurobi.com/

ACM SIGCOMM ’23, September 10-14, 2023, New York, NY, USA

Appendices are supporting material that has not been peer-reviewed.

A APPENDIX

A.1 DP-based Algorithm

Algorithm 1 represents the pseudocode of our DP algorithm. The
DP algorithm requires the same inputs as the search algorithm, i.e.,
the original network topology G*, the target network topology T*,
and constraints C*. We initialize the actions to do at first. Then we
set all the elements of the DP array f (\7, a) to be infinite, except for
£(0,0), which is 0 (Lines 1-4). Then we go through all DP states in
ascending order of the total number of actions, }; v; (Line 6). We
get the predecessor topology V* with the current topology V and
its last action a (Lines 7-8). Then we enumerate the last action a*
of topology V* and compare a* with a to update f (17, a) according
to Equation 7 (Lines 9-13). The auxiliary array g(_}, a) is updated
correspondingly (Line 14). After all the DP states have been visited,
the optimal action sequence can be rebuilt by tracking from the target
topology backward to the original topology (Lines 15-16).

Algorithm 1 DP algorithm of Klotski

Input: The original network topology G*; the target network topology
T*; constraints C*.
Main routine:

1: // Initialize

2: A, V* GetActions(G*, T*)
3 F(V,k) — o0, VV, k

4: £(0,0) «0

5: // Enumerate states and update
6: for V in ascending order of }; v; from 0 to V* do
7 for ain A AND v, > 0 do

8 V* e GetV(‘_}, a)

9 if IsAvailable(‘_}, C*) = True then

for a* in A do
11: 6 « ComputeCost(a,a")
12: if f(V*,a*) +8 < f(V,a) then
13: F(V,a) — f(V¥,a*) +6
14: g(\7, a) « a*

15: // Get the action sequence
16: L « GetAnswer(f,g,A,G*,T*)
7: return L

Subroutines:

* GetActions(G, T): Generate the set of action types A and actions to
do V* given the original topology G and the target topology T.

. GetV(‘;, a): Given the topology represented by V and the last action
a, return the vector V* which represents the predecessor topology.

e ComputeCost(a*, a): Compute the extra cost of action a given the
last action a*.

. IsAvailable(I_}, C*): Check whether the topology represented by v
satisfies the demand and port constraints C*.

e GetAnswer(f,g9,A,G,T): Get the optimal action sequence back-
wards from the target topology T to the original topology G based on
the action set A, DP function f and auxiliary array g.

Time complexity analysis.

PROOF OF THEOREM 1. Given that the target topology is repre-
sented by V* = (v7), the number of action types is |A|, and the total

796

Zhao, et al.

Algorithm 2 A* algorithm of Klotski

Input: The original network topology G*; the target network topology
T*; constraints C*.
Main routine:

1: // Initialize
2: A A" « GetActions(G*,T")
3: Q.put((ComputeH(A’),0), (G* []))
4: Tc «— 0
5: while not Q.empty() do
6: // Get the state with highest priority
7: (prio0, priol), (G,L) « Q.top()
8: /I Check whether the migration is finished
9: if G = T* then
10: return L
11: // Enumerate actions and process each search branch
12: for ain A do
13: b « GetBlock(A' — L,a)
14: G’ « UpdateTopo(G,a,b)
15: L' — L+ {b}
16: Ve CompressG(L')
17: ifIsAvailable(V, Tc,G’,C*) then
18: g «— ComputeG(L")
19: h «— ComputeH(A’ - L")
20: Q.put((g+h,priol +1),(G’,L"))
Subroutines:

* GetActions(G, T): Generate the set of action types A and actions to
do A’ given the original topology G and the target topology T.

* GetBlock(L, a): Return the first operation block with action type a in
L.

* CompressG(L): Return the compact topology representation by the
finished action sequence L.

oI sAzJailable(f/, Tc, G, C*): Check satisfiability for network topology
G, represented by ¥ with cache table Te and constraints C*.

* UpdateTopo(G, a, b): Operate operation block b with action type a
on topology G, and return the updated topology.

* ComputeG(L): Compute the cost of action sequence L.

* ComputeH(A”): Compute the number of action types in A’ as the
estimated cost h(n).

number of actions to do is |L|, the DP function has |A| X []; v} states
in total, where }; o] = |L|. According to Jensen’s Inequality [20],
the number of states |A| x []; o] satisfies |A| x[]; v} < |A]- (%)'AL

For each state, |A| predecessor states are visited to decide the
final value and one constraint satisfiability checking is performed.
As we need to traverse all switches and circuits of the DCN, the time
complexity of one constraint satisfiability checking is ©(|S| + |C]),
where |S| is the number of switches and |C| is the number of circuits.
Thus, the time complexity of DP algorithm is O(|A] - (%) Al (JA]+
|S|+]C])). Note that the time complexity is polynomial to |L| because
|Al, |S|, and |C| are constant for each migration task. O

A.2 A* Search Algorithm

Algorithm 2 shows the pseudocode of the A* algorithm. Given the
original network topology G*, the target network topology T*, and
constraints C*, we initialize the actions to do at the granularity of
the operation block, the priority queue Q, and the cache table T¢

Klotski: Efficient and Safe Network Migration of Large Production Datacenters

storing the satisfiability checking results for A* search (Lines 1-
4). Each element in Q is composed of two pairs, i.e., the priority
pair and the state pair. The priority pair contains the cost f(n) and
the number of finished actions. The state pair contains the current
network topology and the finished action sequence. For each step,
the element with the highest priority (i.e., the element on the top)
is popped out of the priority queue (Lines 6-7). Then we check if
the current topology is the target topology. If it is, the migration
is regarded as finished and the corresponding action sequence is
returned as the final result (Lines 8-10). If not, we enumerate all
the action types and apply each action type to the current topology
(Lines 11-15). If the new topology meets all the demand constraints
and port constraints (Lines 16-17), we compute its priority, generate
the new state, and put the new element into the priority queue Q
(Lines 18-20).

Time complexity analysis.

PROOF OF THEMOREM 2. Assume that the target topology is
represented by V* = (v}), the number of action types is |A], and the
total number of actions to do is |L|. The time complexity of the A*

797

ACM SIGCOMM ’23, September 10-14, 2023, New York, NY, USA

algorithm T is the product of the time complexity for each state and
the number of visited states.

The time complexity for each state is composed of finding succes-
sor states and checking the satisfiability of constraints. One state has
|A| successor states. Besides, efficient satisfiability checking guar-
antees that one state is checked for constraint satisfiability at most
once. For one satisfiability checking, we need to examine all the
switches and circuits, and the time complexity is ©(|S| +|C|), where
|S| and |C| are the numbers of switches and circuits, respectively.
Thus, the time complexity for each state is @(|A| + |S| + |C]).

The number of visited states varies according to the migration
task. In the worst case, the A* algorithm has to visit all states to
find the optimal solution. According to the Proof A.1, there are up

to (%)'A‘ states. Thus, the upper bound of the time complexity T

is O((%)'A| - (JA] +|S] +1C])). In the best case, the A* algorithm
can always visit the optimal action for each state first, i.e., |L| states
are visited in all. Thus, the lower bound of the time complexity T is
Q(IL[- (JA[+[S[+1CD)-

In all, the total time complexity T satisfies T = Q(|L| - (JA|+|S| +
1)) = O((%)'A‘ ~(|Al+ 1S+ D). o

	Abstract
	1 Introduction
	2 Network Migration at Meta
	2.1 DCN Architecture at Meta
	2.2 Why is it hard?
	2.3 Challenges
	2.4 Network Migration Types

	3 Problem Formulation
	4 Klotski Design
	4.1 Search Space Pruning
	4.2 Efficient Satisfiability Checking
	4.3 DP-based Planner
	4.4 A* Search Planner

	5 Implementation
	6 Evaluation
	6.1 Methodology
	6.2 Scalability
	6.3 Generality
	6.4 Analysis of Klotski

	7 Deployment Experience
	7.1 Routing Configurations and Traffic Forecasts
	7.2 Incorporating Operational Constraints during Migration
	7.3 Classical Methods vs. DL Methods

	8 Related Work
	9 Conclusion
	References
	A Appendix
	A.1 DP-based Algorithm
	A.2 A* Search Algorithm

