
Ditto: Efficient Serverless Analytics with Elastic Parallelism
Chao Jin

Peking University

Zili Zhang

Peking University

Xingyu Xiang

Peking University

Songyun Zou

Peking University

Gang Huang

Peking University

Xuanzhe Liu

Peking University

Xin Jin

Peking University

ABSTRACT
Serverless computing provides fine-grained resource elasticity for

data analytics—a job can flexibly scale its resources for each stage,

instead of sticking to a fixed pool of resources throughout its lifetime.

Due to different data dependencies and different shuffling overheads

caused by intra- and inter-server communication, the best degree of

parallelism (DoP) for each stage varies based on runtime conditions.

We present Ditto, a job scheduler for serverless analytics that

leverages fine-grained resource elasticity to optimize for job com-

pletion time (JCT) and cost. The key idea of Ditto is to use a new

scheduling granularity—stage group—to decouple parallelism con-

figuration from function placement. Ditto bundles stages into stage

groups based on their data dependencies and IO characteristics. It

exploits the parallelized time characteristics of the stages to deter-

mine the parallelism configuration, and prioritizes the placement of

stage groups with large shuffling traffic, so that the stages in these

groups can leverage zero-copy intra-server communication for effi-

cient shuffling. We build a system prototype of Ditto and evaluate

it with a variety of benchmarking workloads. Experimental results

show that Ditto outperforms existing solutions by up to 2.5× on

JCT and up to 1.8× on cost.

CCS CONCEPTS
• Computer systems organization→ Cloud computing; • Net-
works→ Cloud computing.

KEYWORDS
Serverless computing, data analytics, task scheduling

ACM Reference Format:
Chao Jin, Zili Zhang, Xingyu Xiang, Songyun Zou, Gang Huang, Xuanzhe

Liu, and Xin Jin. 2023. Ditto: Efficient Serverless Analytics with Elastic

Parallelism. In ACM SIGCOMM 2023 Conference (ACM SIGCOMM ’23), Sep-
tember 10–14, 2023, New York, NY, USA. ACM, New York, NY, USA, 14 pages.

https://doi.org/10.1145/3603269.3604816

ACM ISBN 979-8-4007-0236-5/23/09. . . $15.00

https://doi.org/10.1145/3603269.3604816

1 INTRODUCTION
Serverless computing is a new paradigm for cloud computing [5,

10, 13, 23, 37]. It provides fine-grained resource elasticity for cloud

applications. Cloud resources are allocated to applications in the

form of lightweight stateless functions, which can be started in

sub-seconds and elastically scaled out based on the application

demands. Fine-grained resource elasticity also comes with fine-

grained billing. Users are only charged for the resources consumed

during the execution of functions, excluding the idle time.

The execution and pricing model of serverless computing makes

it a good fit to data analytics jobs [1, 11, 28, 38, 43, 45, 51]. In the

realm of data analytics, a job is typically represented as a directed

acyclic graph (DAG) based on the data dependencies between dif-

ferent execution stages. Each stage consists of a number of tasks

that execute in parallel. Traditional serverful solutions necessitate

users to provision a fixed pool of resources. A job sticks to this re-

source pool throughout its entire lifetime, regardless of the diverse

characteristics and varying resource demands of each stage [43, 45].

Consequently, under-provisioning resources increases job comple-

tion time (JCT), while over-provisioning resources results in low

resource utilization and unnecessary high cost.

Fine-grained resource elasticity, offered by serverless computing,

enables a data analytics job to dynamically scale its resources for

each stage to optimize performance and cost efficiency. Specifically,

each individual task is assigned to a serverless function, and the

number of parallel tasks (i.e., the degree of parallelism or DoP) of

each stage can be flexibly determined according to resource demand.

This inherent scalability benefits both JCT and cost. The stages with

high resource demands can leverage higher degrees of parallelism

for faster execution and reduction in JCT, while those with low

resource demands can use fewer parallel tasks to save cost.

A natural solution is to adjust the DoP for each stage based

on the amount of data it processes. This approach is adopted by

the state-of-the-art solution NIMBLE [51]. Intuitively, the amount

of input data for a stage is correlated with its resource demand.

Allocating more parallel tasks to a stage with a large amount of

input data can effectively reduce the execution time of this stage

and potentially reduce the total JCT. Additionally, it is not necessary

to allocate too many parallel tasks to a stage with a small input

data size to prevent resource waste.

Unfortunately, this solution suffers from two problems. First, the

amount of input data for a stage cannot accurately reflect its actual

resource consumption (§ 4.2). Adjusting the parallelism configura-

tion based on the input data size ignores the relationships between

different stages in the DAG, and the resource usage is a better and

406

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

https://doi.org/10.1145/3603269.3604816
https://doi.org/10.1145/3603269.3604816
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3603269.3604816&domain=pdf&date_stamp=2023-09-01

ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA C. Jin et al.

more relevant metric to configure the parallelism when optimizing

for cost. Second, this solution fails to consider the impact of data

communication between stages (a.k.a., shuffling) due to different

function placement. In early serverless systems, function place-

ment do not affect communication overheads, as all data exchange

is forced via the external storage (e.g., S3 or Redis) [27, 28, 45, 51].

However, recent advancements in serverless systems enable effi-

cient communication through shared memory for functions on the

same server [46, 48]. Given the ever-varying runtime conditions,

the cluster is not always able to accommodate two stages on the

same server when they both use a high DoP. Using a low DoP and

placing the two stages on the same server introduces both lower

JCT and cost due to efficient shared memory.

We present Ditto, a serverless analytics system that exploits fine-

grained elastic parallelism to minimize JCT and cost. The key idea

of Ditto is to use a new scheduling granularity—stage group—to
decouple parallelism configuration from function placement. Ditto

analyzes the DAG and bundles stages into stage groups, taking into

account their data dependencies and IO characteristics. Functions

are placed on servers at the group granularity, obviating the need

of considering intra- and inter-server communication overheads

for parallelism configuration.

There are three technical challenges in realizing Ditto. First, pre-

dicting the execution time of each stage under different DoPs is

critical for the estimation of both JCT and cost. Existing sched-

ulers [45, 51] rely on historical job data to estimate the execution

time, which works well when the parallelism configuration is fixed

in previous executions. However, it is not adequate when it comes

to handling elastic parallelism, where the execution time of a stage

varies widely as the DoP changes. To address this problem, we pro-

pose a step-based time model to capture the relationship between

the execution time and the degree of parallelism.

Second, adjusting the parallelism configuration based on the

amount of input data is suboptimal.We design aDoP ratio computing
algorithm to efficiently calculate the optimal ratios of DoPs between

stages under a given function placement plan. To minimize JCT,

DoP ratio computing recalibrates the DoPs of the stages according to
the data dependencies and the parallelized time characteristics. This

adjustment balances the execution times of the paths in the DAG

and minimizes the execution time of the critical path. To minimize

cost, it transforms the cost optimization for a general DAG into the

JCT optimization for a single-path DAG.

Third and most importantly, co-scheduling the parallelism con-

figuration and function placement under the given resource distri-

bution is challenging. We propose a heuristic greedy grouping algo-

rithm that bundles stages into groups in descending order. Stages

with large shuffling traffic are grouped preferentially so that they

can efficiently shuffle data through zero-copy shared memory. Ditto

combines greedy grouping with DoP ratio computing, and forms a

joint iterative optimization method to reduce JCT and cost.

We implement a system prototype of Ditto and evaluate it under a

variety of benchmarking workloads. The experimental results show

that Ditto outperforms NIMBLE by up to 2.5× on JCT and up to 1.8×
on cost. We also verify the accuracy of the step-based time model

and the effectiveness of DoP ratio computing and greedy grouping.
Besides, Ditto is able to schedule jobs within one millisecond, and

the offline time for building the time model is under 0.3 seconds.

In summary, we make the following contributions.

• We present Ditto, a serverless system that exploits fine-grained

elastic parallelism to minimize JCT and cost.

• We propose a new scheduling granularity for serverless analytics

jobs—stage group—to decouple parallelism configuration from

function placement.

• Wedesign a greedy grouping algorithm to bundle stageswith large

shuffling overheads into stage groups and a DoP ratio computing
algorithm to determine the optimal parallelism configuration

under the given stage groups. Combination of the two algorithms

achieves significant reduction on JCT and cost.

• We implement a Ditto prototype, and experiments show that

Ditto outperforms existing solutions by up to 2.5× on JCT and

up to 1.8× on cost.

2 BACKGROUND AND MOTIVATION
In this section, we first introduce the background of serverless

analytics. Then we describe the impact of degree of parallelism on

serverless analytics jobs and the existing solution to configure it.

Finally, we summarize the challenges to exploit elastic parallelism

for serverless analytics, which motivates our design of Ditto.

2.1 Background on Serverless Analytics
Data analytics. Data analytics workloads are an important type

of workloads in the cloud [1, 11, 26, 28]. The execution of a data

analytics job is divided into a DAG of stages, each comprising

multiple parallel tasks. Figure 1a shows an example DAG with three

stages. Stage 1 and stage 2 are responsible for executing separate

map operations, involving the selection of specific columns from

Table A and B, respectively. Subsequently, stage 3 performs a join
operation that joins the two output tables from the preceding two

stages. A task scheduler is responsible for scheduling the tasks

in each stage based on the entire DAG structure and the runtime

conditions of the cluster.

From serverful to serverless analytics. Traditional serverful
solutions for data analytics [8, 16, 26, 50] provision a fixed pool

of compute and storage resources to facilitate the execution of

jobs. Due to the nature of data analytics, different stages of a job

typically exhibit diverse resource demands [43, 45]. For example,

as a job progresses, the later stages usually process far less data

than the initial stages after multiple filter and join operations.
Consequently, right sizing the resource pool is hard for serverful

analytics. But no matter how the pool is sized, since a job sticks to

a fixed pool throughout its lifetime, resource under-provisioning

or over-provisioning cannot be totally eliminated.

Serverless computing provides fine-grained resource elasticity

to address the resource provisioning problem. Each task can be

mapped to a serverless function, and a stage in the DAG corresponds

to a configurable number of functions, which can be different across

stages. The task scheduler has the freedom to decide the degree of

parallelism for each stage to optimize for JCT or cost. Serverless

computing platforms charge users based on the actual resource

usage. In terms of serverless analytics jobs, the cost of a job is

calculated by the cumulative sum of the product of the running

time and resource usage of each task.

407

Ditto: Efficient Serverless Analytics with Elastic Parallelism ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA

Stage 1

Stage 2

Stage 3

Time

of

 F
un

ct
io

ns

20

10

Stage 1 (map)
SELECT a FROM A

AS A’

Stage 3 (join)
A’ JOIN B’

Stage 2 (map)
SELECT b FROM B

AS B’ 15

10

5

0 20 30
Time

of

 F
un

ct
io

ns

20

10

15

10

5

0 20 30

Stage 1

Stage 2
Stage 3

Time

of

 F
un

ct
io

ns

20

10

15

10

5

0 20 30

Stage 1

Stage 2

Stage 3

(a) DAG of join. (b) Fixed DoP. (c) DoP based on data size. (d) Optimal DoP.

Figure 1: Impact of degree of parallelism (DoP) on job completion time (JCT).

2.2 Benefits and Challenges
Benefits of fine-grained elastic parallelism. Fine-grained elastic
parallelism provided by serverless computing enables each stage to

use a different degree of parallelism, which provides an opportunity

for serverless analytics to minimize JCT and cost. Figure 1 shows an

example to illustrate the benefits of fine-grained elastic parallelism.

Assume there are 20 functions slots available to execute the job with

three stages. The naive solution in Figure 1b distributes function

slots evenly across all stages (i.e., allocates six or seven slots to

each stage), leading to a JCT of 28 time units. Different stages have

different execution speeds. Stage 2 and stage 3 executes much faster

than stage 1, implying that the resources are over-provisioned to

the two stages. Figure 1c allocates fewer function slots to stage 2

and stage 3, but allocates more slots to stage 1. The JCT becomes

23 time units, which is 18% lower. In practice, the execution times

of different tasks in a stage can differ due to the data skew. This

example is simplified to show the benefits of fine-grained elasticity.

Limitations of priorwork.Anatural solution is to adjust the num-

ber of functions (i.e., the degree of parallelism) for each stage based

on its input data size. NIMBLE [51], the state-of-the-art scheduler

for serverless analytics, adopts this policy. Intuitively, this solution

is reasonable, as data IO typically dominates the execution time

for data analytics workloads. However, this solution is suboptimal

since it ignores the data dependencies between stages. Figure 1c

and Figure 1d compares the DoP configurations of NIMBLE and the

optimal solution, respectively. Adjusting the number of functions

in proportional to the input data size makes the execution time of

each stage almost equal, which is optimal for the first two parallel

stages. For consecutive stages with data dependencies, however,

the solution allocates too many function slots to the stage with

larger input data size, leading to a higher JCT. Figure 1d increases

the degree of parallelism of stage 3 to five and reduces the JCT to

19 time units, which is 17% lower than that of Figure 1c.

NIMBLE’s solution is also not suitable when considering the

impact of function placement. Early serverless computing systems

force all data exchange between functions via external storage (e.g.,

S3 or Redis) [27, 28, 45, 51]. As such, function placement does not

affect shuffling overheads, because all shuffling traffic goes through

the external storage.

However, this is no longer true with advancements in serverless

computing platforms [36, 40, 46, 48]. The communication ineffi-

ciency for serverless functions is a known problem, and several

solutions [46, 48] have been proposed to improve it. For example,

M

M

M R

R

M
1
2

31

3 M

M

M

Server 0

4

6

52

4
5 6

Map Task Reduce Task Shared Memory Remote Storage

R

M 1

M 2
1
2

M 3

3

Server 1 Server 0

(a) (b)

Figure 2: Impact of function placement on the best DoP con-
figuration. (a) High DoP with heavy data shuffling time. (b)
Low DoP with almost zero data shuffling time.

SPRIGHT [46] is a recent solution that enables functions to ex-

change data via local shared memory, instead of relying on remote

external storage. This makes function placement relevant for shuf-

fling overheads. In Figure 2, the map functions can communicate

with the local reduce function via shared memory. When the clus-

ter lacks enough free slots for six map functions and one reduce

function on one server, using a smaller degree of parallelism and

placing them on the same server can be more efficient than using a

higher degree of parallelism and placing them on different servers.

Challenges. The impact of data dependencies on job performance

and the impact of function placement on communication over-

head create three challenges for fine-grained parallelism configura-

tion. First, parallelism configuration requires accurate estimation

of the execution time for each stage under different degrees of

parallelism. Analytics jobs in production workloads tend to be

recurring [18, 25, 31–33, 45]. Existing schedulers for serverless an-

alytics [45, 51] rely on job history to estimate execution time. This

is no longer accurate with the introduction of elastic parallelism

and efficient intra-server communication. The fluctuating runtime

resource availability constrains parallelism configuration and func-

tion placement, and different choices of parallelism configuration

and function placement yield varying execution times.

Second, the optimal parallelism configuration depends on the

data dependencies between stages. Stages in general DAGs exhibit

complex data dependencies. Specifically, a stage can consume data

from multiple upstream stages, and the data dependencies can

cascade to downstream stages. Understanding and effectively man-

aging these data dependencies is crucial in achieving an efficient

and well-optimized parallelism configuration.

408

ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA C. Jin et al.

Third, coupled with function placement, the optimization of

parallelism configuration is challenging. The naive solution is to

enumerate all possible combinations to find the best parallelism

configuration and placement plan. However, a data analytics job

contains a DAG of stages and the datacenter cluster involves nu-

merous servers. As a result, the search space of enumeration is

huge, as the decisions for the degree of parallelism and placement

for different stage are supposed to be jointly considered.

3 DITTO OVERVIEW
We present Ditto, a serverless analytics system that exploits elastic

parallelism to achieve efficient and cost-effective execution for

data analytics jobs. Ditto achieves so by dynamically adjusting the

parallelism configuration and function placement based on the two

key techniques: DoP ratio computing and greedy grouping. DoP ratio
computing finds out the optimal parallelism configuration given

the execution characteristics of stages (§ 4.2), and greedy grouping
bundles the stages with large shuffling traffic into groups to reduce

the data communication overhead (§ 4.3).

Architecture overview. Figure 3 shows the overall architecture
of Ditto. Ditto is a serverless system that contains a cluster of

servers to execute functions and an external storage service to

provide data exchange between functions. Functions on the same

server leverage local shared memory for efficient data exchange

(e.g., SPRIGHT [46]). Each server receives function execution re-

quests from the control plane and then executes the corresponding

functions. The number of functions held on each server is limited by

the hardware capability (e.g., CPU cores). In addition, each server

accommodates a runtime monitor to track the runtime statistics

and the execution results of each function.

Ditto components. After submitting an analytics job, Ditto takes

the job DAG and the available resources as input. Users can specify

the optimization objective as either minimizing JCT or cost. Ditto

then calculates the parallelism configuration and task placement

plan for the given job.

Execution time predictor. Ditto builds an execution time model

(§ 4.1) based on the job profiles. The approach of leveraging job his-

tory is inline with other data analytics schedulers [33, 45, 51]. The

main difference is that Ditto considers both degree of parallelism

and task placement to predict the execution time of a stage. Ditto

updates the model periodically as new job profiles are generated.

Elastic parallelism scheduler. The scheduler consists of three parts:
DoP ratio computing (§ 4.2), greedy grouping (§ 4.3) and placement

check (§ 4.4). The scheduler first groups two consecutive stages

with a heuristic greedy policy that leverages local shared memory

as much as possible. After grouping, the scheduler computes the

optimal DoP for each stage with the accurate DoP ratio computing

algorithm. Finally, it uses the best fit method to check whether

the parallelism configuration and the placement plan are feasible

for the available resources. If feasible, the scheduler keeps the two

stages in a group; otherwise, it backtracks to abandon grouping the

two stages. The scheduler repeats the above steps until no more

stages can be grouped.

Job (DAG)

ExecTime
Predictor

(§ 4.1)

Elastic Parallelism Sched.

Function Servers

Job Profiles
External Storage

Data

Runtime Monitor

…Func. Func.

Shared Memory
Data

Resource
Manager

Control Plane

User:
JCT/cost

Greedy
Grouping

(§ 4.3)

DoP Ratio
Computing

(§ 4.2)

Placement Check(§ 4.4)

Figure 3: Ditto overview.

4 DITTO DESIGN
In this section, we first model the execution time of the stages in

analytics jobs (§ 4.1). Then we introduce the DoP ratio computing
algorithm to find the best parallelism configuration given the exe-

cution characteristics of the stages (§ 4.2). Next, we propose greedy
grouping algorithm to bundle stages into groups for placement op-

timization (§ 4.3). Finally, we combine the two algorithms to jointly

optimize parallelism configuration and task placement (§ 4.4).

4.1 Execution Time Model

Step-based timemodel.To accurately profile the execution time of

a stage, we apply the step model in NIMBLE [51]. Typically, a stage

consists of three steps, i.e., read, compute and write. The time of the

three steps are denoted as 𝑅(𝑠, 𝑑,P), 𝐶 (𝑠, 𝑑) and𝑊 (𝑠, 𝑑,P), where
𝑑 represents the number of tasks and P represents the placement

policy. The read and write time are affected by both 𝑑 and P, while
the compute time is only affected by𝑑 . We then derive the execution

time of the entire stage 𝑠:

𝑇 (𝑠, 𝑑,P) = 𝑅(𝑠, 𝑑,P) +𝐶 (𝑠, 𝑑) +𝑊 (𝑠, 𝑑,P) (1)

The read and write steps can be further divided into multiple

fine-grained steps, each of which relates to a data dependency of the

stage. Consequently, we can estimate𝑇 (𝑠, 𝑑,P) by profiling the fine-
grained steps. We model the execution time of each step in the stage

as 𝛼/𝑑+𝛽 , where𝑑 is the degree of parallelism, and 𝛼 and 𝛽 are fitted

offline. 𝛼/𝑑 is the parallelized time of the step, which represents

the execution time benefited from high parallelism, while 𝛽 is the

inherent execution overhead of the step. Assume the number of

steps in stage 𝑠𝑖 is𝑚, and we derive that:

𝑇 (𝑠𝑖 , 𝑑𝑖 ,P) =
𝑚∑︁
𝑘=1

(
𝛼𝑖𝑘

𝑑𝑖
+ 𝛽𝑖𝑘) =

𝛼𝑖

𝑑𝑖
+ 𝛽𝑖 (2)

Modeling the shared memory. In the execution time model 2,

𝛼 and 𝛽 of the I/O steps are influenced by the task placement pol-

icy P. Tasks on the same server exchange data with local shared

memory, which eliminates the data transmission and serializa-

tion/deserialization time. For example, SPRIGHT [46] achieves zero-

copy data exchange with microsecond-level latency, no matter the

data size is small or large. Therefore, 𝛼 and 𝛽 of the I/O steps are set

to zero when P places the corresponding tasks on the same server.

Modeling stragglers. A stage involves multiple parallel tasks, and

the execution time of the stage is determined by its slowest task.

Formula 2 is effective when each task processes the same amount

409

Ditto: Efficient Serverless Analytics with Elastic Parallelism ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA

Parallelized Time Unit Inherent Time

of

 F
un

ct
io

ns

Completion Time

12

3

5 5 6 3

5

10Stage s1

Stage s2

(a) DoP based on data size. (b) Optimal DoP.

Figure 4: Intra-path DoP ratio.

of data, which is impossible in practice. We apply a scaling factor

to adjust the average execution time when fitting Formula 2. In

practice, the scaling factor is dynamically tuned according to the

profiled job history.

4.2 DoP Ratio Computing
We first discuss how to find the optimal parallelism configuration

with a given task placement plan. There are

(𝐶−1
𝑛−1

)
possible par-

allelism configurations, where 𝐶 is the total number of available

function slots and 𝑛 is the number of the stages. However, the par-

allelized time characteristics of stages provide the opportunity to

simplify the problem. The core idea of Ditto is to find the ratio of

the degree of parallelism between stages, denoted as the DoP ratio.
We observe that the best parallelism configuration changes as the

available resources varies but the optimal DoP ratio between stages

remains. Therefore, we design the DoP ratio computing algorithm to

efficiently find the optimal DoP ratio for JCT and cost optimization.

Optimizing JCT. We first consider the case of optimizing JCT. To

ease the analysis, we start with tree-like DAGs and then extend

to general DAGs. We refer to a sequence of stages connected by

data dependencies as a path. The JCT is the execution time of the

critical path in the DAG. The main idea of DoP ratio computing is to
minimize the execution time of the critical path by calculating the

intra-path DoP ratio and balance the execution times of all paths by

calculating the inter-path DoP ratio.
We first demonstrate the intra-path and inter-path DoP ratio

between two stages. Then we merge the two stages into a single

virtual stage based on the execution timemodel. Finally, we combine

the DoP ratio between two stages and the stage merging process

into a bottom-up approach to calculate the DoP ratios from the

leaves (i.e., the initial stages) to the root (i.e., the final stage).

Intra-path DoP ratio. Figure 4 shows an example of the execution

of two consecutive stages (i.e., parent-child stages). Assume there

are 15 function slots available. The completion time of the two

stages is the sum of their execution times. Since the inherent time

of the two stages (i.e., 𝛽1 and 𝛽2) are constant, we omit them in the

completion time calculation. The parameter 𝛼 in the parallelized

time is represented by the total number of time units in the stage,

which also reflects the amount of data processed by the stage. 𝛼1
and 𝛼2 are 60 and 15, respectively. In Figure 4, stage 𝑠1 processes

4× as much data as stage 𝑠2, so the solution based on data size

Parallelized Time Unit Inherent Time

Completion Time

8 6

(a) Unbalanced DoP. (b) Balanced DoP.

Figure 5: Inter-path DoP ratio.

(Figure 4a) assigns 4× more function slots to 𝑠1 than 𝑠2 (i.e., 12

function slots to 𝑠1 and 3 function slots to 𝑠2). The completion time

of the two stages is 10 time units.

However, this method allocates too many function slots to 𝑠1,

leading to the slow down of 𝑠2. The optimal solution (Figure 4b)

distributes function slots according to

√︁
𝛼1/𝛼2, which is 2 in this

case. It assigns 10 function slots to 𝑠1 and 5 function slots to 𝑠2.

After the adjustment, the completion time is 9. We extend the intra-

path DoP ratio to 𝑛 consecutive stages and prove the optimality

according to the Cauchy-Schwarz inequality in Appendix A.1.

Inter-path DoP ratio. Figure 5 shows the execution of two stages as

siblings in a tree, which means they have the same parent (i.e., the

downstream stage). The completion time is the maximum execution

time of the two stages. The intuition to minimize the completion

time is to balance the execution time across the two stages by ad-

justing their DoPs. We prove that the balanced structure is optimal

for 𝑛 sibling stages in Appendix A.2.

As Figure 5a shows, stage 𝑠1 and stage 𝑠2 both have three tasks,

leading to the completion time of 8 time units without considering

the small inherent time. In this case, 𝛼1 is 24 time units and 𝛼2 is

12 time units. And the inter-path DoP ratio is defined as 𝛼1/𝛼2,
which is 2. So we balance the execution time by assigning four and

two function slots to stage 𝑠1 and 𝑠2, respectively. Therefore, the

completion time is 6 time units. Note that the theoretical optimal

solution is an entirely balanced structure, which is not practical. We

omit the influence of the small inherent time with the observation

that most of the execution time can benefit from higher parallelism,

i.e., 𝛼𝑖/𝑑𝑖 ≫ 𝛽𝑖 .

Stage merging. Due to the inverse function form of the parallelized

time, two sibling stages or parent-child stages with the optimal

DoP ratio can be merged into a virtual stage while still conforming

to the execution time model. Let 𝐴 be the array that stores the

parallelized time parameters (𝛼) of different stages and 𝑟𝑖 𝑗 be the

DoP ratio between stage 𝑠𝑖 and 𝑠 𝑗 . The function MERGE_STAGES

in Algorithm 1 merges two sibling stages (line 8–9) or parent-child

stages (line 5–6) into a virtual stage 𝑠 and calculates the parallelized

time parameter of 𝑠 (line 6 and line 9). Then, it replaces 𝑠𝑖 and 𝑠 𝑗 in

the DAG with the virtual stage 𝑠 (line 10).

The concrete calculation of the virtual stage’s parallelized time

parameter is as follows. Assume that 𝑠𝑖 and 𝑠 𝑗 are merged into 𝑠 .

Let 𝑑𝑖 , 𝑑 𝑗 be the DoPs of stage 𝑠𝑖 and 𝑠 𝑗 , respectively. Let 𝑑 be the

DoP of the new stage 𝑠 , meaning that 𝑑𝑖 +𝑑 𝑗 = 𝑑 . Let the execution

times of stage 𝑠𝑖 and 𝑠 𝑗 be 𝛼𝑖/𝑑𝑖 + 𝛽𝑖 and 𝛼 𝑗/𝑑 𝑗 + 𝛽 𝑗 , respectively.

410

ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA C. Jin et al.

For intra-path stage merging, according to the intra-path DoP

ratio (i.e., 𝑑𝑖/𝑑 𝑗 =
√
𝛼𝑖/
√
𝛼 𝑗), we have

𝑑𝑖 =

√
𝛼𝑖√

𝛼𝑖 +
√
𝛼 𝑗

𝑑, 𝑑 𝑗 =

√
𝛼 𝑗

√
𝛼𝑖 +
√
𝛼 𝑗

𝑑

The completion time of stage 𝑠 is the sum of the completion time

of 𝑠𝑖 and 𝑠 𝑗 , which is

𝛼𝑖

𝑑𝑖
+ 𝛽𝑖 +

𝛼 𝑗

𝑑 𝑗
+ 𝛽 𝑗 =

𝛼𝑖 (
√
𝛼𝑖 +
√
𝛼 𝑗)

√
𝛼𝑖𝑑

+ 𝛽𝑖 +
𝛼 𝑗 (
√
𝛼𝑖 +
√
𝛼 𝑗)

√
𝛼 𝑗𝑑

+ 𝛽 𝑗

=
(√𝛼𝑖 +

√
𝛼 𝑗)2

𝑑
+ (𝛽𝑖 + 𝛽 𝑗) (3)

For inter-path stage merging, according to the inter-path DoP

ratio (i.e., 𝑑𝑖/𝑑 𝑗 = 𝛼𝑖/𝛼 𝑗), we have

𝑑𝑖 =
𝛼𝑖

𝛼𝑖 + 𝛼 𝑗
𝑑, 𝑑 𝑗 =

𝛼 𝑗

𝛼𝑖 + 𝛼 𝑗
𝑑

The completion time of stage 𝑠 is the larger completion time of 𝑠𝑖
and 𝑠 𝑗 , which is

max

{
𝛼𝑖

𝑑𝑖
+ 𝛽𝑖 ,

𝛼 𝑗

𝑑 𝑗
+ 𝛽 𝑗

}
= max

{
𝛼𝑖

𝑑𝑖
,
𝛼 𝑗

𝑑 𝑗

}
+max{𝛽𝑖 , 𝛽 𝑗 }

=
𝛼𝑖 + 𝛼 𝑗

𝑑
+max{𝛽𝑖 , 𝛽 𝑗 } (4)

The first equality is due to the balanced structure (i.e., 𝛼𝑖/𝑑𝑖 =

𝛼 𝑗/𝑑 𝑗). Consequently, the execution time of the virtual stage 𝑠

conforms to the execution time model.

Bottom-up approach. Algorithm 1 shows the pseudo-code of the

detailed DoP ratio computing algorithm for JCT optimization. Al-

gorithm 1 merges the stages in a bottom-up manner and calculates

the optimal DoP ratios during the stage merging process. In this

way, it balances the execution time across paths and minimizes the

completion time of the critical path.

LetV be the set of all stages and E be the set of all data depen-

dencies in the DAG. The function BOTTOM_UP_DOP computes

the DoP ratios from the stages with the largest depth to the root

stage with depth zero, which follows the layer-by-layer pattern.

For stages with the same depth, it first merge the sibling stages

into an equivalent virtual stage by stage merging (line 18–23). The

algorithm then merge the virtual stage with its parent stage into

a new virtual stage, decrementing the total depth of the DAG by

one (line 24–26). In this way, the DAG is reduced to a single stage

step by step, and the optimal DoP ratios are obtained one by one

according to the optimality of the intra-path DoP ratio and the

inter-path DoP ratio. With the DoP ratios 𝑟𝑖 𝑗 , we can assign the 𝐶

function slots to 𝑛 stages. Each stage is merged once, so the time

complexity of Algorithm 1 is 𝑂 (|V|).

Extend to General DAGs. Each stage in tree-like DAGs has only one

parent stage. However, in general DAGs, a stage may have multi-

ple parent stages. We emphasize that the above algorithm can be

extended to general DAGs, because: (𝑖) The objective functions are
both to minimize the critical path in tree-like and general DAGs.

(𝑖𝑖) The basic idea is to balance the paths as much as possible.

Therefore, when facing a general DAG, merging sibling stages first

and then merging parent-child stages is still the correct strategy

for computing the optimal DoP ratios.

Algorithm 1 Bottom-up DoP ratio computing algorithm

1: functionMERGE_STAGES(𝑠𝑖 , 𝑠 𝑗 ,𝐴)

2: // Array𝐴[𝑠] stores the parallelized time parameters (𝛼) of all stages
3: 𝛼𝑖 ← 𝐴[𝑠𝑖], 𝛼 𝑗 ← 𝐴[𝑠 𝑗], 𝑠 ← new stage

4: if ∃(𝑠𝑖 , 𝑠 𝑗) ∈ E then

5: 𝑟𝑖 𝑗 ←
√︃

𝛼𝑖
𝛼𝑗

⊲ Intra-path DoP ratio

6: 𝐴[𝑠] ← (√𝛼𝑖 +
√
𝛼 𝑗)2

7: else
8: 𝑟𝑖 𝑗 ← 𝛼𝑖

𝛼𝑗
⊲ Inter-path DoP ratio

9: 𝐴[𝑠] ← 𝛼𝑖 + 𝛼 𝑗

10: Change the DAG (V, E) with the new stage 𝑠

11: return 𝑠

12:

13: function BOTTOM_UP_DOP(V , E,𝐴)
14: 𝑚𝑎𝑥_𝑑𝑒𝑝𝑡ℎ ← the maximum depth of all stages

15: for 𝑖 =𝑚𝑎𝑥_𝑑𝑒𝑝𝑡ℎ → 1 do
16: V(𝑖) ← all stages with depth 𝑖 in V
17: while V(𝑖) ≠ ∅ do
18: Select a stage 𝑠 from V(𝑖)
19: 𝑠𝑝 ← the parent stage of 𝑠 , 𝑆𝑖𝑏 ← the sibling stages of 𝑠

20: while |𝑆𝑖𝑏 | > 1 do
21: Select two stages 𝑠𝑥 , 𝑠𝑦 from 𝑆𝑖𝑏

22: 𝑠 ←MERGE_STAGES(𝑠𝑥 , 𝑠𝑦 ,𝐴)

23: 𝑆𝑖𝑏 ← (𝑆𝑖𝑏 − {𝑠𝑥 , 𝑠𝑦 }) ∪ {𝑠 }
24: 𝑠 ← the only stage in 𝑆𝑖𝑏

25: MERGE_STAGES(𝑠 , 𝑠𝑝 ,𝐴)

26: V(𝑖) ← all stages with depth 𝑖 in V

Optimizing cost. Let 𝑛 be the number of stages and 𝑀 (𝑠𝑖 , 𝑑𝑖) be
the resource usage of stage 𝑠𝑖 with the degree of parallelism 𝑑𝑖 .

𝑀 (𝑠𝑖 , 𝑑𝑖) is a linear function of 𝑑𝑖 :

𝑀 (𝑠𝑖 , 𝑑𝑖) = 𝜌𝑖 + 𝜎𝑖𝑑𝑖 , 𝑖 ∈ {1, 2, . . . , 𝑛} (5)

where 𝜌𝑖 stands for the resource usage related to the data processing

of stage 𝑠𝑖 , and 𝜎𝑖𝑑𝑖 represents the resource overhead of launching

𝑑𝑖 functions. The cost of stage 𝑠𝑖 is 𝑀 (𝑠𝑖 , 𝑑𝑖) ×𝑇 (𝑠𝑖 , 𝑑𝑖 ,P), which
can be rewritten as

𝜌𝑖𝛼𝑖
𝑑𝑖
+𝜎𝑖𝛽𝑖𝑑𝑖 +𝜌𝑖𝛽𝑖 +𝜎𝑖𝛼𝑖 according to Formula 2

and Formula 5. The cost of the DAG is the sum of the cost of all

stages. For an analytics task, resources used to process the big

data are typically far larger than the resource consumption by the

function itself. Then we can ignore 𝜎𝑖𝑑𝑖 and the problem shares

the same form as the JCT optimization for intra-path DoP ratio.

Minimizing the cost of the DAG is equivalent to minimizing the

JCT of a single-path DAG with 𝑛 stages, where the new parallelized

time of stage 𝑠𝑖 is 𝜌𝑖𝛼𝑖/𝑑𝑖 . Then we obtain the optimal DoP ratio as

𝑑𝑖/𝑑 𝑗 =
√
𝜌𝑖𝛼𝑖/

√
𝜌 𝑗𝛼 𝑗 .

4.3 Greedy Grouping
The second problem is to decide the placement of different stages.

As described in §2, task placement affects the performance of data

transmission between stages (the write step of the upstream stage

and the read step of the downstream stage). Due to the limited

resources of a single server, it is impossible to place all stages on

one server and achieve zero-copy shuffling for all intermediate data.

Since shuffle is an all-to-all communication, we need to group stages

(i.e., place their tasks together) and only place the stages within

a group on the same server. In this subsection, we optimize JCT

or cost through grouping stages. We emphasize that the grouping

algorithm only finds the appropriate grouping order, and the final

stage groups are decided in collaboration with DoP ratio computing

and placement check (§ 4.4).

411

Ditto: Efficient Serverless Analytics with Elastic Parallelism ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA

20

𝑷𝒂𝒕𝒉𝟏

𝝎(𝒆𝟏)=100

𝝎 𝒆𝟐 =50

𝝎(𝒆𝟏)=120

𝝎 𝒆𝟐 =50

𝝎(𝒆𝟑)=100

𝝎 𝒆𝟒 =80

20

10

20

20

10

20

20

𝝉 Stage w/ compute time 𝝉 Data dependency w/ communication time 𝝎𝝎

𝑷𝒂𝒕𝒉𝟏 𝑷𝒂𝒕𝒉𝟐

(a) Single path. (b) Multiple paths.

Figure 6: Greedy grouping.

The granularity of grouping is one stage, i.e., a node in the DAG.

The consecutive stages (𝑠𝑖 , 𝑠 𝑗) have a data dependency, i.e., an

edge. The weights of nodes and edges depend on the optimization

objective. Let 𝑅(𝑠),𝐶 (𝑠),𝑊 (𝑠) be the read, compute, and write time

of stage 𝑠 , respectively. Let𝑀 (𝑠) be the resource usage of stage 𝑠 .
For JCT optimization, the weight of node 𝑠𝑖 is𝐶 (𝑠𝑖), and the weight
of (𝑠𝑖 , 𝑠 𝑗) is𝑊 (𝑠𝑖) + 𝑅(𝑠 𝑗). For cost optimization, the node weight

is𝑀 (𝑠𝑖)𝐶 (𝑠𝑖), and the edge weight is𝑀 (𝑠𝑖)𝑊 (𝑠𝑖) +𝑀 (𝑠 𝑗)𝑅(𝑠 𝑗). If
the intermediate data is transmitted through shared memory, the

edge weight is nearly zero due to the zero-copy mechanism.

Optimizing JCT. To optimize JCT, we need to consider the stages

of the critical path. We first introduce the greedy algorithm to group

the stages of a single path, and then extend it to general DAGs. The

execution time of a path is the sum of the weights of all nodes and

edges in the path. Enumerating all possible grouping strategies is

intractable for a large DAG at runtime since the time complexity

is 𝑂 (2 | E |), where E is the set of all edges. Therefore, we propose

the greedy method, which groups the consecutive stages with the

largest weight first. This heuristic method is similar to the greedy

solution of the packing problem and provides more opportunities

to reduce the transmission time.

As shown in Figure 6a, the edges are denoted as 𝑒1 and 𝑒2 and

𝜔 (𝑒) represents the weight of the corresponding edge. For single
path, the algorithm simply traverses the edges in descending order,

i.e., order [𝑒1, 𝑒2].
As for multiple paths, the JCT is the completion time of the

critical path. Thus, we adjust the greedy algorithm to balance the

completion time of each path as much as possible. The algorithm

first finds the critical path through the runtime profile, selects

the edge with the largest weight in the critical path and groups

the stages connected by it. Then, it re-profiles the DAG and finds

the new critical path and repeats the grouping process. The loop

stops when all edges are traversed. The time complexity of the

algorithm is𝑂 (|E | log |E | + |E ||V|), because the sort complexity is

𝑂 (|E | log |E |), and the placement check algorithmneeds to examine

at most |V| stage groups in each iteration. The pseudo-polynomial

time complexity is negligible compared to the data processing time.

Figure 6b shows the grouping order for multiple paths. For sim-

plicity, we assume the sum of the node weights is identical for all

paths. The algorithm first profiles the DAG and selects 𝑃𝑎𝑡ℎ2 as the

critical path. Then, it traverses the edge 𝑒3 with the largest weight

in 𝑃𝑎𝑡ℎ2. After grouping the corresponding stages, the algorithm

re-profiles the DAG (𝜔 (𝑒3) = 0) and selects the new critical path

𝑃𝑎𝑡ℎ1. Then, it traverses the edge 𝑒1 with the largest weight in

𝑃𝑎𝑡ℎ1. Finally, the traversing order is [𝑒3, 𝑒1, 𝑒4, 𝑒2].

Algorithm 2 Greedy grouping

1: function GREEDY_GROUP(V , E, R, 𝑜𝑏 𝑗 , 𝐷𝑜𝑃)

2: // 𝐷𝑜𝑃 stores the DoP of each stage
3: E𝑔 ← ∅
4: while E ≠ ∅ do
5: if 𝑜𝑏 𝑗 is JCT then
6: 𝐶𝑃 ← the critical path of the DAG (V , E)
7: (𝑠𝑖 , 𝑠 𝑗) ← the edge with the largest weight in𝐶𝑃

8: else
9: (𝑠𝑖 , 𝑠 𝑗) ← the edge with the largest weight

10: // Try grouping 𝑠𝑖 and 𝑠 𝑗 , and 𝜔𝑖 𝑗 is the weight of (𝑠𝑖 , 𝑠 𝑗)
11: 𝜔𝑖 𝑗 ← 0, E𝑔 ← E𝑔 ∪ { (𝑠𝑖 , 𝑠 𝑗) }
12: if CAN_PLACE(𝐷𝑜𝑃 , E𝑔 , R) is false then
13: E𝑔 ← E𝑔 − { (𝑠𝑖 , 𝑠 𝑗) }
14: E ← E − { (𝑠𝑖 , 𝑠 𝑗) }

Optimizing cost. In serverless computing, the cost of the stage

is in proportion to the product of its resource consumption and

duration. Minimizing the transmission cost in the DAG is different

from minimizing the transmission time. Thus, we adjust the weight

of the edge to the product of the read/write time and the average

resource usage. The communication cost is the sum of the cost

of each edge, so the greedy algorithm traverses every edge of the

entire DAG in descending order by weight.

Algorithm 2 shows the pseudo-code of the greedy grouping algo-

rithm. The function GREEDY_GROUP finds the grouping strategy

based on the aforementioned greedy policy. It uses E𝑔 to record the
edges whose related stages are grouped. The while loop traverses

all edges in the order based on the optimization objective. In each

iteration, the function finds the edge with the largest weight in the

critical path for JCT optimization and that with the largest weight

for cost optimization. We can also reduce the time complexity of

deciding traverse order to 𝑂 (|E | log |E |) by profiling the DAG and

sorting all edges in advance, instead of finding one edge in each it-

eration. The function CAN_PLACE checks whether the parallelism

configuration and placement plan satisfy the resource constraintsR.
If grouping the stages connected by this edge satisfies the resource

constraints, the edge is added to E𝑔 . The algorithm finishes when

all edges are traversed.

4.4 Combination

Placement check. Given the deterministic stage groups and the

DoP of each stage, the subsequent problem is to place the stage
groups on the physical servers with different number of function

slots. Ditto adopts the best-fit algorithm to place the stage groups.

The best-fit algorithm first sorts the stage groups in descending

order according to the number of function slots that the group

requires. Then, it traverses the sorted stage groups and places the

group on the server with the nearest function slot number. If there

is no enough resources to place a group, the placement check fails

for the given groups.

Joint optimization. Algorithm 3 shows the pseudo-code of the

joint optimization for JCT. It co-optimizes the parallelism config-

uration and the stage grouping in an iterative manner. Initially,

each stage is regarded as a group. In each iteration, the algorithm

follows the greedy grouping order to traverse the edges in the DAG.

It attempts to group the two stages connected by an edge. Then, it

412

ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA C. Jin et al.

Algorithm 3 Joint optimization for JCT

1: function JOINT_ITERATIVE_OPTIMIZATION(V , E, R)
2: // Initialize 𝐷𝑜𝑃 and update the parameters (𝐴, 𝜔) based on 𝐷𝑜𝑃

3: 𝐷𝑜𝑃 ← BOTTOM_UP_DOP(V , E,𝐴)
4: UPDATE_PARAMS(𝐴, 𝜔 , 𝐷𝑜𝑃)

5: // E𝑔 and E𝑢 store grouped and ungrouped edges, respectively
6: E𝑔 ← ∅, E𝑢 ← E
7: while E𝑢 ≠ ∅ do
8: Sort E𝑢 in greedy grouping order mentioned in § 4.3

9: for (𝑠𝑖 , 𝑠 𝑗) ∈ E𝑢 do
10: // Try grouping 𝑠𝑖 and 𝑠 𝑗
11: 𝜔𝑖 𝑗 ← 0, E𝑔 ← E𝑔 ∪ { (𝑠𝑖 , 𝑠 𝑗) }
12: 𝐷𝑜𝑃 ← BOTTOM_UP_DOP(V , E,𝐴)
13: if CAN_PLACE(𝐷𝑜𝑃 , E𝑔 , R) then
14: UPDATE_PARAMS(𝐴, 𝜔 , 𝐷𝑜𝑃)

15: E𝑢 ← E𝑢 − { (𝑠𝑖 , 𝑠 𝑗) }
16: break
17: else
18: // Undo grouping 𝑠𝑖 and 𝑠 𝑗 , and restore 𝐷𝑜𝑃

19: Undo line 11 and 12

20: if No edge in E𝑢 is grouped in the above loop then
21: break

uses the DoP ratio computing algorithm, implemented by the func-

tion BOTTOM_UP_DOP as shown in Algorithm 1, to figure out the

optimal parallelism configuration based on the stage groups and

the parallelized time characteristics. The function CAN_PLACE

implements the best fit algorithm to check the placement feasibility

under the resource constraints R. After the stage grouping and

parallelism configuration are determined, the algorithm tries to

place the stage groups onto the physical servers. If the placement

check fails, the algorithm backtracks and breaks the group into the

original stages. Otherwise, the new group is retained. Subsequently,

it traverses other consecutive stages in next iterations and repeats

the above process until no stages can be grouped.

The joint optimization for cost is similar to that for JCT. The only

difference is that the optimal DoP ratios and the greedy grouping

order are computed based on the cost model, as described in § 4.2

and § 4.3, respectively.

Remark. Since each step in the joint optimization algorithm takes

pseudo-polynomial time, the time complexity of the algorithm is

pseudo-polynomial with respect to the number of nodes and edges

in the DAG. The algorithm guarantees that the objective func-

tion (i.e., JCT or cost) is non-increasing during the iterations. Let

𝐹 (𝐷𝑖 , 𝑃𝑖) be the value of the objective function after the 𝑖-th iter-

ation, where 𝐷𝑖 and 𝑃𝑖 represents the DoP configuration and the

placement plan, respectively. Then we have the following inequali-

ties:

𝐹 (𝐷𝑖+1, 𝑃𝑖+1) ≤ 𝐹 (𝐷𝑖 , 𝑃𝑖+1) ≤ 𝐹 (𝐷𝑖 , 𝑃𝑖) (6)

The first inequality is due to the optimality of the DoP ratio com-
puting algorithm in the 𝑖+1-th iteration. The second inequality is

because the objective function monotonously decreases as more

stages are grouped under the same DoP configuration, following

the greedy grouping order.

4.5 Practical Issues

Pipelined execution. NIMBLE [51] proposes a pipelining mecha-

nism to overlap the steps of different stages, which influences the

execution timemodel. Therefore, Ditto adjusts the profile by reading

the pipelining annotation and modifies the time model accordingly.

Task Data Partition

Up-Stage Down-Stage

Placement Granularity

Up-Stage Down-Stage

(a) Shuffle. (b) Gather.

Figure 7: Decomposing stage groups to task groups.

In detail, the execution time of the downstream stage only involves

the non-overlapping steps while ignoring the overlapping steps.

DoP rounding. The DoP ratio computing algorithm calculates the

degree of parallelism 𝑑𝑖 as a real number instead of an integer in

real world. Thus, we round down the real number to the nearest

integer and set 𝑑𝑖 to one if 𝑑𝑖 < 1. It guarantees that each stage

involves at least one task for execution. Besides, the round down

method aims to guarantee the resource constraint, i.e.,

∑𝑛
𝑖=1 𝑑𝑖 ≤ 𝐶 .

Stage group decomposition. For data communications in the

DAG, we replace shuffle with a new primitive, gather, to decompose

stage groups into fine-grained groups while maintaining correct-

ness. Figure 7 shows a stage group with two stages (an upstream

stage and a downstream stage), each of which has two tasks. In

Figure 7a, each upstream task shuffles its data partitions to two

downstream tasks. Due to the full collection, the four tasks are sup-

posed to be placed on the same server. However, gather (Figure 7b)

allows one upstream task to transmit data to only one downstream

task. The stage group is divided into two fine-grained task groups,

which improves the possibility of successful placement.

Resource utilization. We assume all available resources at the

job arrival can be used throughout its lifetime, excluding the re-

source sharing across jobs. It may cause resource under-utilization

because the stages in a job may not overlap in time, leaving the

corresponding function slots idle. We emphasize that Ditto focuses

on optimizing JCT and cost for an individual job, which are the

most user-concerned objectives in serverless computing. However,

maximizing the resource utilization for a serverless cluster requires

co-design of inter-job resource allocation and intra-job scheduling

by cluster providers. We leave this study as future work.

5 IMPLEMENTATION
We implement a system prototype of Ditto with ∼3000 lines of code
in C++. Our implementation is based on SPRIGHT [46], a server-

less framework that allows high-performance data communication

through shared memory. We use Amazon S3 [7] and provision Re-

dis [15] nodes on Amazon ElastiCache [2] as our external storage.

Analytics queries with Ditto. We implement a data analytics

execution engine atop SPRIGHT. The engine integrates a set of

SQL operators (e.g., join and groupby) for analytics queries. It
also provides data communication APIs (e.g., shuffle and broadcast)

413

Ditto: Efficient Serverless Analytics with Elastic Parallelism ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA

Q1 Q16 Q94 Q950
200
400
600
800

1000

JC
T
(s
)

100% 75% 50% 25%0
200
400
600
800

1000

Norm-1.0 Norm-0.8 Zipf-0.9 Zipf-0.990
200
400
600
800

1000
Ditto NIMBLE

(a) TPC-DS queries. (b) Different slot usage. (c) Different slot distributions.

Figure 8: Performance when optimizing JCT.

that transparently dispatch I/O requests to shared memory or ex-

ternal storage, according to the co-location of the upstream and

downstream tasks.

Scheduler.We implement the algorithms described in § 4 for the

scheduler. The scheduler takes the job DAG as input and performs

the joint optimization of parallelism configuration and task place-

ment. Then, it sends the optimized execution requests to the func-

tion servers. Ditto specifies a set of tasks of the same stage in the

execution request, which decreases the network overhead. Besides,

the execution request also includes the upstream and downstream

task information that are necessary for the transparent data com-

munication APIs.

Task launch time. Task launch time affects job performance. Start-

ing a task too early incurs unnecessary costs for waiting for up-

stream tasks, while starting it too late increases the JCT. NIM-

BLE [51] focuses on estimating the right time to launch tasks, and

we employ the NIMBLE algorithm in Ditto to decide the task launch

time. The NIMBLE algorithm is triggered after the parallelism con-

figuration and task placement are determined, andDitto uses a timer

to send execution requests at the calculated task launch times.

6 EVALUATION
In this section, we first use the TPC-DS benchmark to evaluate the

overall performance of Ditto over the state-of-the-art serverless

analytics scheduler, NIMBLE (§ 6.1, § 6.2 and § 6.3). Next, we dive

into Ditto to analyze the effectiveness of its components (§ 6.4).

Finally, we demonstrate the system overhead of Ditto (§ 6.5).

Experimental Setup. All experiments are conducted on AWS. We

deploy the control plane of Ditto on onem6i.4xlarge instance config-

ured with 16 vCPUs and 64 GB memory. We use eight m6i.24xlarge

instances for function execution, with 96 vCPUs and 384 GB mem-

ory each. Each function slot is configured with one CPU core and

each function uses memory based on the task demand. We use

Amazon S3, a widely-used elastic object storage in serverless com-

puting, as the main external storage in the experiments. Redis [15]

is adopted as the supplemental external storage for the evaluation.

We use two cache.r5.4xlarge instances on ElastiCache [2] as Redis

nodes, with 16 vCPUs and 114 GB memory each.

Benchmark. We evaluate Ditto with the TPC-DS analytics bench-

mark [17] which provides representative workloads for retail prod-

uct suppliers. The TPC-DS benchmark involves 100 standard de-

cision support queries that vary in terms of computation and I/O

loads. We select four representative queries (Q1, Q16, Q94 and Q95)

with different performance characteristics to perform our exper-

iments. In most experiments, the scale factor of the benchmark

is configured to 1000, which generates 1TB data of several tables,

and the input data size of the four queries ranges from 33 GB to

312 GB. While evaluating the overall performance with Redis as

the external storage, the scale factor is set to 100, because Redis is

typically used to speed up access to small intermediate data and

has limited capacity. We split the input data files into partitions of

equal size to enable parallel execution.

Metrics. We focus on JCT and cost as the metrics to evaluate

Ditto. For a given query, JCT is defined as the duration from the

submission of the query to the completion of its last task. Cost is

defined as the aggregation of the memory footprint multiplied by

the execution time of each task, which is in line with major cloud

providers’ billing policies [5, 10, 13]. To guarantee that all the task

are executed favorably, we use the maximum theoretical memory

footprint to represent its actual memory footprint. We consider

the cost of data persistence in shared memory and Redis, while

ignoring that in S3 [7]. This is because memory cost dominates in

serverless computing [51], and S3 is priced >1000× less per GB per

time unit [3, 6] than memory.

Baseline.We compare Ditto to NIMBLE, the state-of-the-art sched-

uler for serverless analytics. NIMBLE tunes the degree of parallelism

of each stage in proportion to the input data size, and randomly

places tasks on function servers.

6.1 Overall Performance under JCT
We first compare the overall performance of Ditto to NIMBLE un-

der the metric JCT. To simulate the realistic scenarios, we restrict

the number of function slots on each function server and use the

function slot distribution to represent the available resources. We

configure S3 as the default external storage. Figure 8 demonstrates

the JCT reduction of Ditto against NIMBLE under different settings.

JCT under different queries.We set the function slot distribution

to Zipf-0.9 and evaluate Ditto with the four TPC-DS queries. Fig-

ure 8a indicates that Ditto outperforms NIMBLE by 1.26-1.69× in
JCT across all the four queries, which have different characteristics

of computation and I/O. This is because Ditto uses greedy grouping
to reduce the data shuffling time between large stages and uses

DoP ratio computing to obtain the best parallelism configuration

under the given execution time model. Ditto combines these two

techniques to further reduce the JCT.

414

ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA C. Jin et al.

Q1 Q16 Q94 Q950.0

0.5

1.0

1.5

2.0

N
or
m
al
iz
ed

C
os
t

100% 75% 50% 25%0.0

0.5

1.0

1.5

2.0

Norm-1.0 Norm-0.8 Zipf-0.9 Zipf-0.990.0

0.5

1.0

1.5

2.0
Ditto NIMBLE

(a) TPC-DS queries. (b) Different slot usage. (c) Different slot distributions.

Figure 9: Performance when optimizing cost.

Q1 Q16 Q94 Q950

50

100

150

200

JC
T
(s
)

Q1 Q16 Q94 Q950.0

0.5

1.0

1.5

2.0

N
or
m
al
iz
ed

C
os

t

Ditto NIMBLE

(a) JCT. (b) Cost.

Figure 10: Performance under Redis.

JCT under different slot usage. We vary the function slot usage

to show that Ditto consistently outperforms NIMBLE. The function

slot usage is defined as the ratio of the number of available function

slots to the maximum number of slots on each server. We configure

the function slot usage from 100% to 25% with a step of 25%, and

each function server holds the same number of function slots. Ditto

runs Q95 under the four resource configurations, and Figure 8b

shows that Ditto reduces the JCT by 1.5-2.5× compared to NIMBLE.

JCT under different slot distributions.We also evaluate Ditto

under different function slot distributions. The normal distribution

and the Zipf distribution are used, for each we specify two skewness

parameters. For normal distribution, we symmetrically sample eight

probabilities with a fixed step from the standard normal distribution

𝑁 (0, 1) and its variant 𝑁 (0, 0.8). The probabilities are the ratios of
the permitted number of function slots to the maximum number of

that on each server. For Zipf distribution, we use the probabilities

calculated from Zipf-0.9 and Zipf-0.99. Figure 8c indicates that Ditto

achieves 1.51-1.83× lower JCT than NIMBLE.

6.2 Overall Performance under Cost
The experimental settings are the same with § 6.1. Figure 9 demon-

strates the normalized cost of Ditto and NIMBLE under the different

function slot distributions. When optimizing cost, Ditto outper-

forms NIMBLE by 1.16-1.67×. There are two reasons that the cost

reduction is smaller than that of JCT. First, for cost optimization,

adjusting the degree of parallelism based on the input data size is

closer to the optimal solution. The best parallelism configuration

when optimizing cost is strongly linearly correlated to the square

root of the product of a stage’s resource usage and its execution time,

as described in § 4.2. And both the resource usage and execution

time are related to the input data size. Therefore, the relationship

between the best parallelism configuration and the input data size

is nearly linear. However, the input data size cannot simply replace

the two factors, so Ditto still achieves a comparable cost saving.

Second, Ditto schedules more stages to exchange data through

shared memory compared with NIMBLE, increasing the shared

memory cost caused by data persistence. Note that eliminating the

data persistence in the shared memory is orthogonal to our work

and is not trivial. It requires extremely accurate prediction of the

reasonable task launch time, so that the data can be immediately

consumed by downstream tasks once it is produced. We employ

NIMBLE to decide the task launch time to minimize the shared

memory cost as much as possible.

6.3 Performance under Redis
Existing serverless analytics frameworks can employ a small

amount of fast external storage to further reduce JCT and cost [45].

We perform an experiment to verify that serverless analytics also

benefits from Ditto when using fast external storage. In this experi-

ment, we use Redis, a fast in-memory storage system, to provide

the external storage service. We adapt the total data size of the

benchmark to 100 GB, which can be accommodated by the Redis

server. We configure the function slot distribution as Zipf-0.9 and

run Q95 with NIMBLE and Ditto. Figure 10 demonstrates the appre-

ciable performance improvement achieved with Ditto under Redis.

In comparison to NIMBLE, Ditto consistently reduces the JCT by

1.74-1.88× and the cost by 1.09-1.83×.

6.4 Deep Dive of Ditto
We conduct a deep dive into Ditto to verify the effectiveness of its

three components: the execution time predictor, the greedy grouping
algorithm, and theDoP ratio computing algorithm.We also illustrate

the execution breakdown of Ditto to gain a better understanding

of the benefits from elastic parallelism.

Execution time predictor. We use the four queries with different

characteristics to evaluate Ditto’s execution time predictor. For

each query, we execute one compute-intensive stage and one IO-

intensive stage under different degrees of parallelism. The external

storage is S3. The results are shown in Figure 11. We plot the

average execution time of all tasks in a stage as points, while the

lines represent the predicted execution time of the stage based

on the execution time model. The gap between the predicted and

actual execution time is within 6% for all stages except for Q1’s

IO-intensive stage. When the degree of parallelism grows to 120,

the predicted execution time is 15% larger than the actual execution

time. This is because tasks in Q1’s IO-intensive stage processes

415

Ditto: Efficient Serverless Analytics with Elastic Parallelism ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA

20 40 60 80 100 120
Degree of Parallelism

0

40

80

120

160

E
xe

cu
tio

n
Ti
m
e
(s
)

20 40 60 80 100 120
Degree of Parallelism

0

300

600

900

1200

20 40 60 80 100 120
Degree of Parallelism

0

300

600

900

1200

20 40 60 80 100 120
Degree of Parallelism

0

300

600

900

1200
IO-Stage Actual IO-Stage Model Comp-Stage Actual Comp-Stage Model

(a) Q1. (b) Q16. (c) Q94. (d) Q95.

Figure 11: Effectiveness of Ditto’s execution time model.

Q1 Q16 Q94 Q950

200

400

600

800

1000

JC
T
(s
)

Q1 Q16 Q94 Q950.0

0.5

1.0

1.5

2.0

N
or
m
al
iz
ed

C
os
t

NIMBLE NIMBLE+Group NIMBLE+DoP Ditto

(a) JCT. (b) Cost.

Figure 12: Effectiveness of greedy grouping and DoP ratio
computing.

5-10× less data than that in other queries’ IO-intensive stages. Due

to the higher execution time variance of smaller tasks, the accuracy

of the execution time model is lower.

Greedy grouping and DoP ratio computing. To evaluate the ef-

fectiveness of greedy grouping andDoP ratio computing, we compare

the performance of the following four approaches: (1) NIMBLE; (2)

NIMBLE+Group, which uses greedy grouping to bundle stages into

groups under the parallelism configuration of NIMBLE; (3) NIM-

BLE+DoP, which uses DoP ratio computing to adjust the parallelism
configuration without bundling stages; and (4) Ditto. We run the

four queries with the four approaches under the Zipf-0.9 function

slot distribution. Figure 12 shows the results. NIMBLE+Group de-

creases the data shuffling time by co-locating stages on the same

function server, so it reduces the JCT by 1.07-1.36× and the cost by

1.2-1.49× compared to NIMBLE. NIMBLE+DoP achieves 1.12-1.23×
reduction in JCT and 1.11-1.35× reduction in cost over NIMBLE by

using DoP ratio computing to adjust to a better parallelism configu-

ration for the specific optimization objective. By combining greedy
grouping and DoP ratio computing, Ditto achieves considerable per-

formance gains over NIMBLE.

Execution breakdown. To illustrate the benefit from elastic par-

allelism, we compare Ditto to an approach with a fixed parallelism

configuration that all stages have the same degree of parallelism.

We show the DAG structure of Q95 in Figure 13, where the shuffle

operation means the upstream tasks transfer data to their intended

downstream tasks. The all-gather operation means each down-

stream task receives a copy of the data from all upstream tasks.

Figure 14 shows the execution time breakdown across different

stages with the fixed degree of parallelism (40 in this case). Fig-

ure 15a and Figure 15b demonstrate the Q95 execution breakdown

map1
groupby

map2
reduce1

map3
join1

map4
join2

reduce2

All Gather
Shuffle

Stage Index
9
8
7
6
5
4
3
2
1

Figure 13: The DAG structure of Q95.

0 25 50 75 100 125 150
Time (s)

1
2
3
4
5
6
7
8
9

S
ta
ge

In
de

x
setup
read
compute
write

Figure 14: Time breakdown for Q95.

under the Zipf-0.9 function slot distribution with fixed parallelism

and elastic parallelism, respectively.

When optimizing JCT, Ditto identifies the most time-consuming

stage in each path and expands the parallelism of such stage to

reduce the execution time of the critical path. In the context of the

provided example and the corresponding execution time breakdown

illustrated in Figure 14, stage 1 (orange) and stage 4 (purple) emerge

as the most time-consuming stages in their respective paths. To

address this, Ditto expands the parallelism of stage 1 from 24 to 60,

and the parallelism of stage 4 from 24 to 48. It is worth noting that

the execution times of stage 5 (yellow) and stage 7 (pink) increase

due to the shrinking parallelism of these shorter stages. However,

the JCT remains unaffected by the change because the execution of

the two stages still overlaps with the critical path.

Figure 15 also shows the benefit derived fromDitto’s stage group-

ing. The execution time of stage 2 (green) decreases even if the

degree of parallelism reduces. This is because Ditto bundles stage

1 and stage 2 into a stage group and the results of stage 1 are

transferred to stage 2 through zero-copy shared memory, which

eliminates the data transmission overhead. The combined effect of

elastic parallelism and stage grouping in Ditto significantly reduces

the JCT without increasing the total number of functions used.

416

ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA C. Jin et al.

0 100 200 300 400
Time (s)

0

50

100

150

200

S
ta

ge
s

&
 T

as
ks

0 100 200 300 400
Time (s)

0

50

100

150

200

S
ta

ge
s

&
 T

as
ks

(a) Fixed parallelism. (b) Elastic parallelism.

Figure 15: Execution breakdown for Ditto when optimizing
JCT.

6.5 Ditto Overhead

Scheduling overhead. To evaluate the runtime overhead of Ditto,

we measure the scheduling time for each query under different

resource usage. Table 1 shows that the scheduling time is sub-

millisecond for all queries, which is negligible compared to the

query processing time (hundreds of seconds). As the usage of func-

tion slots on each node varies from 25% to 100%, the scheduling

time remains nearly constant. This is because the time complexity

of Ditto is independent of the total number of function slots and is

only related to the structure of the query DAG.

Building execution time model. We evaluate the offline time to

build the execution time model. For each stage in a query, Ditto

collects the profiles under five different degrees of parallelism and

uses least squares method to fit the execution time model of the

stage. Table 2 shows that the time to build the execution time

model is within 0.3 seconds for all queries, which is relatively small

compared to the queries with JCTs of hundreds of seconds.

7 RELATEDWORK

Serverless frameworks. With the rise of serverless comput-

ing, cloud providers and open-source communities have launched

serverless frameworks for specific applications (e.g., SQL ana-

lytics [4, 11, 12], video processing [21, 28] and machine learn-

ing [20, 47]) and general-purpose computing [5, 9, 10, 13, 14]. Func-

tions in these frameworks communicate with each other in different

ways. AWS Lambda [5] uses shared storage to exchange data, while

Knative [14] allows direct communication over network. Recent

works, SPRIGHT [46] and Pheromone [48], introduce shared mem-

ory to accelerate data communication within the node. We remark

that Ditto’s design is suitable for the two types of remote commu-

nication, since the execution time model also adapts to the data

transmission over network, where the time is almost proportional

to the data size.

Intra-job parallelism. Existing analytics schedulers [31–33, 42,

51] largely side-step the problem of scheduling intra-job parallelism

for data analytics jobs. Users are burdened with the choice of the

parallelism of the stages in their jobs. Decima [42] focuses on inter-

job parallelism and leverages reinforcement learning to allocate

parallel workers across jobs. However, it is designed for serverful

deployments without fine-grained resource elasticity, where tasks

of a stage are executed in multiple waves by a fixed number of work-

ers. NIMBLE [51] manually adjusts the degree of parallelism based

Scheduling Time

Query 25% 50% 75% 100%

Q1 235 𝜇s 195 𝜇s 264 𝜇s 208 𝜇s

Q16 210 𝜇s 211 𝜇s 227 𝜇s 257 𝜇s

Q94 247 𝜇s 207 𝜇s 169 𝜇s 174 𝜇s

Q95 201 𝜇s 206 𝜇s 221 𝜇s 187 𝜇s

Table 1: Scheduling overhead of Ditto under different re-
source usage.

Query Model Building Time

Q1 216 ms

Q16 208 ms

Q94 194 ms

Q95 197 ms

Table 2: Execution time model building overhead of Ditto for
different queries.

on the input data size of each stage, leading to performance degra-

dation. The intra-job parallelism scheduling problem is also related

to the parallel query scheduling in databases [24, 29, 30]. Unlike

Ditto, however, algorithms proposed for parallel query schedul-

ing optimize for serverful objectives, such as the average JCT and

resource utilization under the fixed resource constraints.

Task placement. The task placement optimization aims to leverage

the data locality to minimize the data transfer overhead [35, 49]. It is

well studied in the context of geo-distributed data analytics [34, 39,

44], and is also studied in the context of serverless computing [19,

22, 41]. However, unlike Ditto, these works do not consider the

joint impact of task placement and parallelism configuration.

8 CONCLUSION
We present Ditto, a serverless system that harnesses the elastic

parallelism to minimize JCT and cost for data analytics jobs. Ditto

efficiently determines the appropriate parallelism configuration

and jointly schedules parallelism with task placement to reduce

data shuffling overhead. Extensive experiments show that Ditto

outperforms the state-of-the-art scheduler by up to 2.5× on JCT

and up to 1.8× on cost, while making scheduling decisions within

one millisecond.

This work does not raise any ethical issues.

Acknowledgments. This work was supported by the National

Key Research and Development Program of China under the grant

number 2022YFB4500700.

We sincerely thank the anonymous reviewers for their valuable

feedback on this paper. Xin Jin is the corresponding author. Chao

Jin, Zili Zhang, Gang Huang, Xuanzhe Liu and Xin Jin are also

with the Center for Data Space Technology and System, Peking

University and the Key Laboratory of High Confidence Software

Technologies (Peking University), Ministry of Education.

417

Ditto: Efficient Serverless Analytics with Elastic Parallelism ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA

REFERENCES
[1] 2023. Amazon Aurora Serverless. https://aws.amazon.com/rds/aurora/serverless.

[2] 2023. Amazon ElastiCache. https://aws.amazon.com/elasticache/.

[3] 2023. Amazon ElasticCache Pricing. https://aws.amazon.com/elasticache/

pricing/.

[4] 2023. Amazon Glue. https://aws.amazon.com/glue/.

[5] 2023. Amazon Lambda. https://aws.amazon.com/lambda/.

[6] 2023. Amazon S3 Pricing. https://aws.amazon.com/s3/pricing/.

[7] 2023. Amazon simple storage service (S3). https://aws.amazon.com/s3/.

[8] 2023. Apache Hive. https://hive.apache.org/.

[9] 2023. Apache OpenWhisk. https://openwhisk.apache.org/.

[10] 2023. Azure Functions. https://azure.microsoft.com/products/functions/.

[11] 2023. Azure Synapse Analytics. https://azure.microsoft.com/products/synapse-

analytics/.

[12] 2023. Google BigQuery. https://cloud.google.com/bigquery/.

[13] 2023. Google Cloud Functions. https://cloud.google.com/functions/.

[14] 2023. Knative. https://knative.dev/.

[15] 2023. Redis. https://redis.io/.

[16] 2023. Spark SQL. https://spark.apache.org/sql/.

[17] 2023. TPC-DS. https://www.tpc.org/tpcds/.

[18] Sameer Agarwal, Srikanth Kandula, Nicolas Bruno, Ming-Chuan Wu, Ion Stoica,

and Jingren Zhou. 2012. Re-Optimizing Data-Parallel Computing. In USENIX
NSDI.

[19] Istemi Ekin Akkus, Ruichuan Chen, Ivica Rimac, Manuel Stein, Klaus Satzke,

Andre Beck, Paarijaat Aditya, and Volker Hilt. 2018. SAND: Towards High-

Performance Serverless Computing. In USENIX ATC.
[20] Ahsan Ali, Riccardo Pinciroli, Feng Yan, and Evgenia Smirni. 2019. BATCH:

Machine Learning Inference Serving on Serverless Platforms with Adaptive

Batching. In SC20: International Conference for High Performance Computing,
Networking, Storage and Analysis.

[21] LixiangAo, Liz Izhikevich, GeoffreyM. Voelker, andGeorge Porter. 2018. Sprocket:

A Serverless Video Processing Framework. In ACM Symposium on Cloud Com-
puting.

[22] Benjamin Carver, Jingyuan Zhang, Ao Wang, Ali Anwar, Panruo Wu, and Yue

Cheng. 2020. Wukong: A Scalable and Locality-Enhanced Framework for Server-

less Parallel Computing. In ACM Symposium on Cloud Computing.
[23] Paul Castro, Vatche Ishakian, Vinod Muthusamy, and Aleksander Slominski. 2019.

The Rise of Serverless Computing. Commun. ACM (2019).

[24] Chandra Chekuri, Waqar Hasan, and Rajeev Motwani. 1995. Scheduling Problems

in Parallel Query Optimization. In ACM SIGACT-SIGMOD-SIGART Symposium
on Principles of Database Systems.

[25] Mosharaf Chowdhury, Zhenhua Liu, Ali Ghodsi, and Ion Stoica. 2016. HUG:

Multi-Resource Fairness for Correlated and Elastic Demands. In USENIX NSDI.
[26] Jeffrey Dean and Sanjay Ghemawat. 2004. MapReduce: Simplified Data Processing

on Large Clusters. In USENIX OSDI.
[27] Sadjad Fouladi, Francisco Romero, Dan Iter, Qian Li, Shuvo Chatterjee, Christos

Kozyrakis, Matei Zaharia, and Keith Winstein. 2019. From Laptop to Lambda:

Outsourcing Everyday Jobs to Thousands of Transient Functional Containers. In

USENIX ATC.
[28] Sadjad Fouladi, Riad S. Wahby, Brennan Shacklett, Karthikeyan Vasuki Balasubra-

maniam, William Zeng, Rahul Bhalerao, Anirudh Sivaraman, George Porter, and

Keith Winstein. 2017. Encoding, Fast and Slow: Low-Latency Video Processing

Using Thousands of Tiny Threads. In USENIX NSDI.
[29] Minos N. Garofalakis and Yannis E. Ioannidis. 1996. Multi-Dimensional Resource

Scheduling for Parallel Queries. ACM SIGMOD Rec. (1996).
[30] Minos N. Garofalakis and Yannis E. Ioannidis. 1997. Parallel Query Scheduling

and Optimization with Time- and Space-Shared Resources. In Proceedings of the
VLDB Endowment.

[31] Robert Grandl, Ganesh Ananthanarayanan, Srikanth Kandula, Sriram Rao, and

Aditya Akella. 2014. Multi-Resource Packing for Cluster Schedulers. In ACM
SIGCOMM.

[32] Robert Grandl, Mosharaf Chowdhury, Aditya Akella, and Ganesh Anantha-

narayanan. 2016. Altruistic Scheduling in Multi-Resource Clusters. In USENIX
OSDI.

[33] Robert Grandl, Srikanth Kandula, Sriram Rao, Aditya Akella, and Janardhan

Kulkarni. 2016. GRAPHENE: Packing and Dependency-Aware Scheduling for

Data-Parallel Clusters. In USENIX OSDI.
[34] Chien-Chun Hung, Ganesh Ananthanarayanan, Leana Golubchik, Minlan Yu,

and Mingyang Zhang. 2018. Wide-Area Analytics with Multiple Resources. In

EuroSys.
[35] Michael Isard, Vijayan Prabhakaran, Jon Currey, Udi Wieder, Kunal Talwar, and

Andrew Goldberg. 2009. Quincy: Fair Scheduling for Distributed Computing

Clusters. In ACM SOSP.
[36] Zhipeng Jia and Emmett Witchel. 2021. Nightcore: Efficient and Scalable Server-

less Computing for Latency-Sensitive, Interactive Microservices. In ACM ASP-
LOS.

[37] Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti, Chia-Che Tsai, Anurag

Khandelwal, Qifan Pu, Vaishaal Shankar, Joao Carreira, Karl Krauth, Neeraja J.

Yadwadkar, Joseph E. Gonzalez, Raluca Ada Popa, Ion Stoica, and David A. Pat-

terson. 2019. Cloud Programming Simplified: A Berkeley View on Serverless

Computing. Commun. ACM (2019).

[38] Ana Klimovic, Yawen Wang, Patrick Stuedi, Animesh Trivedi, Jonas Pfefferle,

and Christos Kozyrakis. 2018. Pocket: Elastic Ephemeral Storage for Serverless

Analytics. In USENIX OSDI.
[39] Konstantinos Kloudas, Margarida Mamede, Nuno Preguiça, and Rodrigo Ro-

drigues. 2015. Pixida: Optimizing Data Parallel Jobs in Wide-Area Data Analytics.

In Proceedings of the VLDB Endowment.
[40] Swaroop Kotni, Ajay Nayak, Vinod Ganapathy, and Arkaprava Basu. 2021. Faast-

lane: Accelerating Function-as-a-Service Workflows. In USENIX ATC.
[41] Ashraf Mahgoub, Karthick Shankar, SubrataMitra, Ana Klimovic, Somali Chaterji,

and Saurabh Bagchi. 2021. SONIC: Application-aware Data Passing for Chained

Serverless Applications. In USENIX ATC.
[42] Hongzi Mao, Malte Schwarzkopf, Shaileshh Bojja Venkatakrishnan, Zili Meng,

and Mohammad Alizadeh. 2019. Learning Scheduling Algorithms for Data Pro-

cessing Clusters. In ACM SIGCOMM.

[43] Matthew Perron, Raul Castro Fernandez, David DeWitt, and Samuel Madden.

2020. Starling: A Scalable Query Engine on Cloud Functions. In ACM SIGMOD.
[44] Qifan Pu, Ganesh Ananthanarayanan, Peter Bodik, Srikanth Kandula, Aditya

Akella, Paramvir Bahl, and Ion Stoica. 2015. Low Latency Geo-Distributed Data

Analytics. In ACM SIGCOMM.

[45] Qifan Pu, Shivaram Venkataraman, and Ion Stoica. 2019. Shuffling, Fast and Slow:

Scalable Analytics on Serverless Infrastructure. In USENIX NSDI.
[46] Shixiong Qi, Leslie Monis, Ziteng Zeng, Ian-chin Wang, and K. K. Ramakrish-

nan. 2022. SPRIGHT: Extracting the Server from Serverless Computing! High-

Performance EBPF-Based Event-Driven, Shared-Memory Processing. In ACM
SIGCOMM.

[47] Hao Wang, Di Niu, and Baochun Li. 2019. Distributed Machine Learning with a

Serverless Architecture. In IEEE INFOCOM.

[48] Minchen Yu, Tingjia Cao, Wei Wang, and Ruichuan Chen. 2023. Following

the Data, Not the Function: Rethinking Function Orchestration in Serverless

Computing. In USENIX NSDI.
[49] Matei Zaharia, Dhruba Borthakur, Joydeep Sen Sarma, Khaled Elmeleegy, Scott

Shenker, and Ion Stoica. 2010. Delay Scheduling: A Simple Technique for Achiev-

ing Locality and Fairness in Cluster Scheduling. In EuroSys.
[50] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, and Ion

Stoica. 2010. Spark: Cluster Computing with Working Sets. In USENIX HotCloud
Workshop.

[51] Hong Zhang, Yupeng Tang, Anurag Khandelwal, Jingrong Chen, and Ion Stoica.

2021. Caerus: NIMBLE Task Scheduling for Serverless Analytics. In USENIX
NSDI.

418

https://aws.amazon.com/rds/aurora/serverless
https://aws.amazon.com/elasticache/
https://aws.amazon.com/elasticache/pricing/
https://aws.amazon.com/elasticache/pricing/
https://aws.amazon.com/glue/
https://aws.amazon.com/lambda/
https://aws.amazon.com/s3/pricing/
https://aws.amazon.com/s3/
https://hive.apache.org/
https://openwhisk.apache.org/
https://azure.microsoft.com/products/functions/
https://azure.microsoft.com/products/synapse-analytics/
https://azure.microsoft.com/products/synapse-analytics/
https://cloud.google.com/bigquery/
https://cloud.google.com/functions/
https://knative.dev/
https://redis.io/
https://spark.apache.org/sql/
https://www.tpc.org/tpcds/

ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA C. Jin et al.

Appendices are supporting material that has not been peer-reviewed.

A APPENDIX
A.1 Optimality of the Intra-path DoP Ratio
For a single-path DAG with 𝑛 stages, let

𝛼𝑖
𝑑𝑖
+ 𝛽𝑖 be the execution

time of the 𝑖-th stage according to the execution time model. Let

𝐶 be the number of function slots. The problem of minimizing the

JCT can be expressed as

min

(𝑑1,𝑑2,...,𝑑𝑛)

𝑛∑︁
𝑖=1

(
𝛼𝑖

𝑑𝑖
+ 𝛽𝑖

)
(7)

s. t.

𝑛∑︁
𝑖=1

𝑑𝑖 = 𝐶 (8)

Since the term

∑𝑛
𝑖=1 𝛽𝑖 is constant, we can omit it from the objective

function. Replace
𝛼𝑖
𝑑𝑖

with

(√︃
𝛼𝑖
𝑑𝑖

)
2

and 𝑑𝑖 with (
√
𝑑𝑖)2, and we can

bound the simplified objective function

∑𝑛
𝑖=1

𝛼𝑖
𝑑𝑖

using the Cauchy-

Schwarz inequality as follows.[
𝑛∑︁
𝑖=1

(√︂
𝛼𝑖

𝑑𝑖

)
2

]
·
[
𝑛∑︁
𝑖=1

(
√︁
𝑑𝑖)2

]
≥

(
𝑛∑︁
𝑖=1

√︂
𝛼𝑖

𝑑𝑖
·
√︁
𝑑𝑖

)
2

⇔
(
𝑛∑︁
𝑖=1

𝛼𝑖

𝑑𝑖

)
·
(
𝑛∑︁
𝑖=1

𝑑𝑖

)
≥

(
𝑛∑︁
𝑖=1

𝛼𝑖

)
2

(9)

⇒
𝑛∑︁
𝑖=1

𝛼𝑖

𝑑𝑖
≥ 1

𝐶

(
𝑛∑︁
𝑖=1

𝛼𝑖

)
2

(10)

The equality in inequality 9 holds if and only if√︁
𝛼1/𝑑1√
𝑑1

=

√︁
𝛼2/𝑑2√
𝑑2

= · · · =
√︁
𝛼𝑛/𝑑𝑛√
𝑑𝑛

⇒𝑑𝑖

𝑑 𝑗
=

√︂
𝛼𝑖

𝛼 𝑗
, ∀𝑖, 𝑗 ∈ {1, 2, . . . , 𝑛} (11)

So the intra-path DoP ratio is optimal, which concludes the proof.

A.2 Optimality of the Balanced Structure in the
Inter-path DoP Ratio

We now prove that the completion time for 𝑛 sibling stages is

minimized when the execution time of each stage is balanced. Let

the execution time of the 𝑖-th stage be
𝛼𝑖
𝑑𝑖
+ 𝛽𝑖 . All stages start at the

same time, because the function BOTTOM_UP_DOP in Algorithm 1

merges stages in a layer-by-layer manner. Every time the inter-path

DoP ratio computing is invoked, the 𝑛 sibling stages, which may

be virtual stages, have no upstream stages.

We prove the optimality of the balanced structure by induction

on 𝑛. Let 𝐶 be the total number of function slots. For the base case

(i.e., 𝑛 = 2), the problem of minimizing the completion time of the

two stages can be expressed as

min

(𝑑1,𝑑2)
max

{
𝛼1

𝑑1
+ 𝛽1,

𝛼2

𝑑2
+ 𝛽2

}
(12)

s. t. 𝑑1 + 𝑑2 = 𝐶 (13)

We define (𝑑∗
1
, 𝑑∗

2
) as the solution subject to

𝛼1

𝑑∗
1

+ 𝛽1 =
𝛼2

𝑑∗
2

+ 𝛽2
and then prove that (𝑑∗

1
, 𝑑∗

2
) is the optimal solution. An arbitrary

solution (𝑑1, 𝑑2) subject to𝑑1+𝑑2 = 𝐶 either allocates more function

slots to the first stage or to the second stage, and we have
𝛼1

𝑑1
+ 𝛽1 ≥

𝛼1

𝑑∗
1

+ 𝛽1, if 𝑑1 ≤ 𝑑∗
1
∧ 𝑑2 ≥ 𝑑∗

2

𝛼2

𝑑2
+ 𝛽2 ≥

𝛼2

𝑑∗
2

+ 𝛽2, if 𝑑1 ≥ 𝑑∗
1
∧ 𝑑2 ≤ 𝑑∗

2

⇒max

{
𝛼1

𝑑1
+ 𝛽1,

𝛼2

𝑑2
+ 𝛽2

}
≥ max

{
𝛼1

𝑑∗
1

+ 𝛽1,
𝛼2

𝑑∗
2

+ 𝛽2
}

(14)

The completion time under (𝑑1, 𝑑2) is no less than that under

(𝑑∗
1
, 𝑑∗

2
), so (𝑑∗

1
, 𝑑∗

2
) is the optimal parallelism configuration.

For the induction step, we assume that the optimal structure for

𝑛 − 1 sibling stages satisfies 𝛼1

𝑑∗
1

+ 𝛽1 = 𝛼2

𝑑∗
2

+ 𝛽2 = · · · = 𝛼𝑛−1
𝑑∗
𝑛−1
+ 𝛽𝑛−1.

For 𝑛 sibling stages, minimizing completion time is formulated as

min

(𝑑1,𝑑2,...,𝑑𝑛)
max

{
𝛼1

𝑑1
+ 𝛽1,

𝛼2

𝑑2
+ 𝛽2, . . . ,

𝛼𝑛

𝑑𝑛
+ 𝛽𝑛

}
(15)

s. t.

𝑛∑︁
𝑖=1

𝑑𝑖 = 𝐶 (16)

Taking the first 𝑛 − 1 stages as a whole, we can bound the above

objective function as

max

𝑖∈{1,2,...,𝑛}

{
𝛼𝑖

𝑑𝑖
+ 𝛽𝑖

}
=max

{
max

𝑖∈{1,2,...,𝑛−1}

{
𝛼𝑖

𝑑𝑖
+ 𝛽𝑖

}
,
𝛼𝑛

𝑑𝑛
+ 𝛽𝑛

}
≥max

{
min

(𝑑1,𝑑2,...,𝑑𝑛−1)
max

𝑖∈{1,2,...,𝑛−1}

{
𝛼𝑖

𝑑𝑖
+ 𝛽𝑖

}
,
𝛼𝑛

𝑑𝑛
+ 𝛽𝑛

}
(17)

The equality in inequality 17 holds when the completion time of

the first 𝑛 − 1 stages (i.e., the first term on the right-hand side of

inequality 17) is minimized.

Similar to the base case, let (𝑑∗
1
, 𝑑∗

2
, . . . , 𝑑∗𝑛) be the solution sub-

ject to
𝛼1

𝑑∗
1

+ 𝛽1 = 𝛼2

𝑑∗
2

+ 𝛽2 = · · · = 𝛼𝑛
𝑑∗𝑛
+ 𝛽𝑛 . For an arbitrary solution

(𝑑1, 𝑑2, . . . , 𝑑𝑛), we adjust (𝑑1, 𝑑2, . . . , 𝑑𝑛−1) to balance the execu-

tion time of the first 𝑛−1 stages. Let (𝑑′
1
, 𝑑′

2
, . . . , 𝑑′𝑛) be the adjusted

solution subject to
𝛼1

𝑑 ′
1

+ 𝛽1 =
𝛼2

𝑑 ′
2

+ 𝛽2 = · · · = 𝛼𝑛−1
𝑑 ′
𝑛−1
+ 𝛽𝑛−1 and

𝑑′𝑛 = 𝑑𝑛 . According to the induction hypothesis and the inequal-

ity 17, the completion time under (𝑑′
1
, 𝑑′

2
, . . . , 𝑑′𝑛) is less than or

equal to that under (𝑑1, 𝑑2, . . . , 𝑑𝑛). The solution (𝑑′
1
, 𝑑′

2
, . . . , 𝑑′𝑛) ei-

ther allocates more function slots to the first 𝑛 − 1 stages or to the

𝑛-th stage compared to (𝑑∗
1
, 𝑑∗

2
, . . . , 𝑑∗𝑛), and we have

𝛼𝑛

𝑑′𝑛
+ 𝛽𝑛 ≥

𝛼𝑛

𝑑∗𝑛
+ 𝛽𝑛, if 𝑑′𝑛 ≤ 𝑑∗𝑛

max
𝑛−1
𝑖=1

{
𝛼𝑖

𝑑′
𝑖

+ 𝛽𝑖
}
≥ max

𝑛−1
𝑖=1

{
𝛼𝑖

𝑑∗
𝑖

+ 𝛽𝑖
}
, if 𝑑′𝑛 ≥ 𝑑∗𝑛

Note that

∑𝑛−1
𝑖=1 𝑑′

𝑖
≤ ∑𝑛−1

𝑖=1 𝑑∗
𝑖
in the second case, so for every

𝑖 ∈ {1, 2, . . . , 𝑛 − 1}, 𝑑′
𝑖
≤ 𝑑∗

𝑖
. This is because (𝑑′

1
, 𝑑′

2
, . . . , 𝑑′

𝑛−1)
and (𝑑∗

1
, 𝑑∗

2
, . . . , 𝑑∗

𝑛−1) both satisfy the induction hypothesis, and

increasing one of 𝑑′
𝑖
but decreasing another violates the equality

constraint for the execution time of the first 𝑛 − 1 stages. Conse-
quently, the completion time under (𝑑′

1
, 𝑑′

2
, . . . , 𝑑′𝑛) is no less than

that under (𝑑∗
1
, 𝑑∗

2
, . . . , 𝑑∗𝑛), and (𝑑∗1 , 𝑑

∗
2
, . . . , 𝑑∗𝑛) is the optimal so-

lution. Hence by induction, the balanced structure is optimal and

we can obtain the inter-path DoP ratio after omitting the small

inherent time 𝛽𝑖 . This concludes the proof.

419

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Background on Serverless Analytics
	2.2 Benefits and Challenges

	3 Ditto Overview
	4 Ditto Design
	4.1 Execution Time Model
	4.2 DoP Ratio Computing
	4.3 Greedy Grouping
	4.4 Combination
	4.5 Practical Issues

	5 Implementation
	6 Evaluation
	6.1 Overall Performance under JCT
	6.2 Overall Performance under Cost
	6.3 Performance under Redis
	6.4 Deep Dive of Ditto
	6.5 Ditto Overhead

	7 Related Work
	8 Conclusion
	References
	A Appendix
	A.1 Optimality of the Intra-path DoP Ratio
	A.2 Optimality of the Balanced Structure in the Inter-path DoP Ratio

