
Neural Packet Classification
Eric Liang

1
, Hang Zhu

2
, Xin Jin

2
, Ion Stoica

1

1
UC Berkeley,

2
Johns Hopkins University

ekl@berkeley.edu, hzhu@jhu.edu, xinjin@cs.jhu.edu, istoica@cs.berkeley.edu

ABSTRACT
Packet classification is a fundamental problem in computer network-

ing. This problem exposes a hard tradeoff between the computation

and state complexity, which makes it particularly challenging. To

navigate this tradeoff, existing solutions rely on complex hand-

tuned heuristics, which are brittle and hard to optimize.

In this paper, we propose a deep reinforcement learning (RL) ap-

proach to solve the packet classification problem. There are several

characteristics that make this problem a good fit for Deep RL. First,

many existing solutions iteratively build a decision tree by splitting

nodes in the tree. Second, the effects of these actions (e.g., splitting

nodes) can only be evaluated once the entire tree is built. These

two characteristics are naturally captured by the ability of RL to

take actions that have sparse and delayed rewards. Third, it is com-

putationally efficient to generate data traces and evaluate decision

trees, which alleviate the notoriously high sample complexity prob-

lem of Deep RL algorithms. Our solution, NeuroCuts, uses succinct

representations to encode state and action space, and efficiently

explore candidate decision trees to optimize for a global objective.

It produces compact decision trees optimized for a specific set of

rules and a given performance metric, such as classification time,

memory footprint, or a combination of the two. Evaluation on Class-

Bench shows that NeuroCuts outperforms existing hand-crafted

algorithms in classification time by 18% at the median, and reduces

both classification time and memory footprint by up to 3×.

CCS CONCEPTS
•Networks→Packet classification; •Theory of computation
→ Reinforcement Learning.

KEYWORDS
Packet classification, Reinforcement learning

ACM Reference Format:
Eric Liang, Hang Zhu, Xin Jin, and Ion Stoica. 2019. Neural Packet Classifica-

tion. In SIGCOMM ’19: 2019 Conference of the ACM Special Interest Group on
Data Communication, August 19–23, 2019, Beijing, China. ACM, New York,

NY, USA, 14 pages. https://doi.org/10.1145/3341302.3342221

1 INTRODUCTION
Packet classification is one of the fundamental problems in com-

puter networking. The goal of packet classification is to match a

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SIGCOMM ’19, August 19–23, 2019, Beijing, China
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-5956-6/19/08. . . $15.00

https://doi.org/10.1145/3341302.3342221

given packet to a rule from a set of rules, and to do so while opti-

mizing the classification time and/or memory footprint. Packet clas-

sification is a key building block for many network functionalities,

including firewalls, access control, traffic engineering, and network

measurements [13, 29, 55]. As such, packet classifiers are widely

deployed by enterprises, cloud providers, ISPs, and IXPs [1, 29, 48].

Existing solutions for packet classification can be divided into

two broad categories. Solutions in the first category are hardware-

based. They leverage Ternary Content-AddressableMemories (TCAMs)

to store all rules in an associative memory, and then match a

packet to all these rules in parallel [23]. As a result, TCAMs provide

constant classification time, but come with significant limitations.

TCAMs are inherently complex, and this complexity leads to high

cost and power consumption. This makes TCAM-based solutions

prohibitive for implementing large classifiers [55].

The solutions in the second category are software based. These

solutions build sophisticated in-memory data structures—typically

decision trees—to efficiently perform packet classification [29].

While these solutions are far more scalable than TCAM-based so-

lutions, they are slower, as the classification operation needs to

traverse the decision tree from the root to the matching leaf.

Building efficient decision trees is difficult. Over the past two

decades, researchers have proposed a large number of decision tree

based solutions for packet classification [13, 29, 40, 47, 55]. However,

despite the many years of research, these solutions have two major

limitations. First, they rely on hand-tuned heuristics to build the tree.

Examples include maximizing split entropy [13], balancing splits

with custom space measures [13], special handling for wildcard

rules [47], and so on. This makes them hard to understand and

optimize over different sets of rules. If a heuristic is too general, it

cannot take advantage of the characteristics of a particular set of

rules. If a heuristic is designed for a specific set of rules, it typically

does not achieve good results on another set of rules with different

characteristics.

Second, these heuristics do not explicitly optimize for a given ob-

jective (e.g., tree depth). They make decisions based on information

(e.g., the difference between the number of rules in the children, the

number of distinct ranges in each dimension) that is only loosely
related to the global objective. As such, their performance can be

far from optimal.

In this paper, we propose a learning approach to packet classifica-

tion. Our approach has the potential to address the limitations of the

existing hand-tuned heuristics. In particular, our approach learns
to optimize packet classification for a given set of rules and objec-

tive, can easily incorporate pre-engineered heuristics to leverage

their domain knowledge, and does so with little human involve-

ment. The recent successes of deep learning in solving notoriously

hard problems, such as image recognition [22] and language trans-

lation [51], have inspired many practitioners and researchers to

apply deep learning, in particular, and machine learning, in general,

https://doi.org/10.1145/3341302.3342221
https://doi.org/10.1145/3341302.3342221

SIGCOMM ’19, August 19–23, 2019, Beijing, China Eric Liang, Hang Zhu, Xin Jin, and Ion Stoica

to systems and networking problems [4, 6, 16, 33, 34, 54, 62, 64, 65].

While in some of these cases there are legitimate concerns about

whether machine learning is the right solution for the problem

at hand, we believe that deep learning is a good fit for our prob-

lem. This is notable since, when an efficient formulation is found,

learning-based solutions have often outperformed hand-crafted

alternatives [21, 36, 44].

There are two general approaches to apply learning to packet

classification. The first is to replace the decision tree with a neural

network, which given a packet will output the rule matching that

packet. Unfortunately, while appealing, this end-to-end solution has

a major drawback: it does not guarantee the correct rule is always

matched. While this might be acceptable for some applications

such as traffic engineering, it is not acceptable for others, such as

access control. Another issue is that large rule sets will require corre-

spondingly large neural network models, which can be expensive to

evaluate without accelerators such as GPUs. The second approach,

and the one we take in this paper, is to use deep learning to build a

decision tree. Recent work has applied deep learning to optimize

decision trees for machine learning problems [20, 38, 59]. These so-

lutions, however, are designed formachine learning settings that are

different than packet classification, and aim to maximize accuracy.

In contrast, decision trees for packet classification provide perfect

accuracy by construction, and the goal is to minimize classification

time and memory footprint.

Our solution uses deep reinforcement learning (RL) to build effi-

cient decision trees. There are three characteristics that makes RL

a particularly good fit for packet classification. First, the natural

solution to build a decision tree is to start with one node and recur-

sively split (cut) it. Unfortunately, this kind of approach does not

have a greedy solution. When making a decision to cut a node, we

do not know whether that decision was a good one (i.e., whether

it leads to an efficient tree) before we finish building the actual

tree. RL naturally captures this characteristic as it does not assume

that the impact of a given decision on the performance objective is

known immediately. Second, unlike existing heuristics which take

actions that are only loosely related to the performance objective,

the explicit goal of an RL algorithm is to directly maximize the

performance objective. Third, unlike other RL domains such as as

robotics, for our problem it is possible to evaluate an RL model

quickly (i.e., a few seconds of CPU time). This alleviates one of the

main drawbacks of RL algorithms: the non-trivial learning time due

to the need to evaluate a large number of models to find a good

solution. By being able to evaluate each model quickly (and, as we

will see, in parallel) we significantly reduce the learning time.

To this end, we design NeuroCuts, a deep RL solution for packet

classification that learns to build efficient decision trees. There

are three technical challenges to formulate this problem as an RL

problem. First, the tree is growing during the execution of the

algorithm, as existing nodes are split. This makes it very difficult

to encode the decision tree, as RL algorithms require a fixed size

input. We address this problem by noting that the decision of how

to split a node in the tree depends only on the node itself; it does not

depend on the rest of the tree. As such, we do not need to encode the

entire tree; we only need to encode the current node. The second

challenge is in reducing the sparsity of rewards to accelerate the

learning process; here we exploit the branching structure of the

Priority Src IP Dst IP Src Port Dst Port Protocol
2 10.0.0.0 10.0.0.0/16 * * *
1 * * [0, 1023] [0, 1023] TCP
0 * * * * *

Figure 1: A packet classifier example. Real-world classifiers
can have 100K rules or more.

problem to provide denser feedback for tree size and depth. The

final challenge is that training for very large sets of rules can take

a long time. To address this, we leverage RLlib [30], a distributed

RL library.

In summary, we make the following contributions.

• We show that the packet classification problem is a good fit for

reinforcement learning (RL).

• We present NeuroCuts, a deep RL solution for packet classifica-

tion that learns to build efficient decision trees.

• We show that NeuroCuts outperforms state-of-the-art solutions,

improving classification time by 18% at the median and reducing

both time and memory usage by up to 3×.

The code for NeuroCuts is open source and is available at

https://github.com/neurocuts/neurocuts.

2 BACKGROUND
In this section, we provide background on the packet classification

problem, and summarize the key ideas behind the decision tree

based solutions to solve this problem.

2.1 Packet Classification
A packet classifier contains a list of rules. Each rule specifies a

pattern on multiple fields in the packet header. Typically, these

fields include source and destination IP addresses, source and des-

tination port numbers, and protocol type. The rule’s pattern spec-

ifies which packets match the rule. Matching conditions include

prefix based matching (e.g., for IP addresses), range based match-

ing (e.g., for port numbers), and exact matching (e.g., for protocol

type). A packet matches a rule if each field in the packet header

satisfies the matching condition of the corresponding field in the

rule, e.g., the packet’s source/destination IP address matches the

prefix of the source/destination address in the rule, the packet’s

source/destination port number is contained in the source/destination

range specified in the rule, and the packet’s protocol type matches

the rule’s protocol type.

Figure 1 shows a packet classifier with three rules. The first rule

matches all packets with source address 10.0.0.1 and the destination

addresses sharing prefix 10.0.0.0/16. Other fields are unspecified

(i.e., they are ⋆) meaning that the rule matches any value in these

fields. The second rule matches all TCP packets with source and

destination ports in the range [0, 1023], irrespective of IP addresses

(as they are ⋆). Finally, the third rule is a default rule that matches

all packets. This guarantees that any packet matches at least one

rule.

Since rules can overlap, it is possible for a packet to match multi-

ple rules. To resolve this ambiguity, each rule is assigned a priority.

A packet is then matched to the highest priority rule. For example,

packet (10.0.0.0, 10.0.0.1, 0, 0, 6) matches all the three rules of the

https://github.com/neurocuts/neurocuts

Neural Packet Classification SIGCOMM ’19, August 19–23, 2019, Beijing, China

R1
R0

R4

R2

R5

R3

X

Y

R0, R1, R2,
R3, R4, R5

R1, R3,
R4

R0, R1,
R4

R1, R2,
R4

R1, R4,
R5

R3,
R4R1 R4R0,

R1 R4R1,
R2

R4,
R5

R1,
R5

(a) Packet classifier. (b) Decision tree.

Figure 2: Node cutting.

packet classifier in Figure 1. However, since the first rule has the

highest priority, we match the packet to the first rule only.

2.2 Decision Tree Algorithms
Packet classification is similar to the point location problem in a

multi-dimensional geometric space: the fields in the packet header

we are doing classification on (e.g., source and destination IP ad-

dresses, source and destination port numbers, and protocol num-

ber) represent the dimensions in the geometric space, a packet is

represented as a point in this space, and a rule as a hypercube.

Unfortunately, the point location problem exhibits a hard tradeoff

between time and space complexities [14].

The packet classification problem is then equivalent to finding

all hypercubes that contains the point corresponding to a given

packet. In particular, in a d-dimensional geometric space with n
non-overlapping hypercubes and when d > 3, this problem has

either (i) a lower bound of O(loд n) time and O(nd) space, or (ii) a

lower bound of O(loдd−1n) time and O(n) space [14]. The packet
classification problem allows the hypercubes (i.e., rules) to overlap,

and thus is at least as hard as the point location problem [14]. In

other words, if we want logarithmic computation time, we need

space that is exponential in the number of dimensions (fields), and

if we want linear space, the computation time will be exponential

in the logarithm of the number of rules. Given that for packet

classification d = 5, neither of these choices is attractive.

Next, we discuss two common techniques employed by exist-

ing solutions to build decision trees for packet classification: node
cutting and rule partition.

Node cutting.Most existing solutions for packet classification aim

to build a decision tree that exhibits low classification time (i.e.,

time complexity) and memory footprint (i.e., space complexity) [55].

The main idea is to split nodes in the decision tree by “cutting”

them along one or more dimensions. Starting from the root which

contains all rules, these algorithms iteratively split/cut the nodes

until each leaf contains fewer than a predefined number of rules.

Given a decision tree, classifying a packet reduces to walk the tree

from the root to a leaf, and then chose the highest priority rule

associated with that leaf.

Figure 2 illustrates this technique. The packet classifier contains

six rules (R0 to R5) in a two-dimensional space. Figure 2(a) shows

each rule as a rectangle in the space, and represents the cuts as

dashed lines. Figure 2(b) shows the corresponding decision tree

for this packet classifier. The root of the tree contains all the six

rules. First, we cut the entire space (which represents the root) into

four chunks along dimension x . This leads to the creation of four

children. If a rule intersects a child’s chunk, it is added to that child.

R0
R2

R5

R3

X

Y

(a) Partition 1.

(b) Partition 2.

R1

R4

X

Y

R0, R2,
R3, R5

R3 R0 R2 R5

R1, R4

R1 R4

Figure 3: Rule partition.

For example, R1, R3 and R4 all intersect the first chunk (i.e., the

first quarter in this space), and thus they are all added to the first

root’s child. If a rule intersects multiple chunks it is added to each

corresponding child, e.g., R1 is added to all the four children. Next,

we cut the chunk corresponding to each of the four children along

dimension y. As a result, each of the nodes at the first level will end

up with two children.

Rule partition. One challenge with "blindly" cutting a node is that

we might end up with a rule being replicated to a large number

of nodes [55]. In particular, if a rule has a large size along one

dimension, cutting along that dimension will result in that rule

being added to many nodes. For example, rule R1 in Figure 2(a) has

a large size in dimension x . Thus, when cutting along dimension

x , R1 will end up being replicated at every node created by the

cut. Rule replication can lead to decision trees with larger depths

and sizes, which translate to higher classification time and memory

footprint.

One solution to address this challenge is to first partition rules

based on their "shapes". Broadly speaking, rules with large sizes

in a particular dimension are put in the same set. Then, we can

build a separate decision tree for each of these partitions. Figure 3

illustrates this technique. The six rules in Figure 2 are grouped into

two partitions. One partition consists of rules R1 and R4, as both

these rules have large sizes in dimension x . The other partition

consists of the other four rules, as these rules have small sizes in

dimension x . Figure 3(a) and Figure 3(b) show the corresponding

decision trees for each partition. Note that the resulting trees have

lower depth, and smaller number of rules per node as compared

to the original decision tree in Figure 2(b). To classify a packet, we

classify it against every decision tree, and then choose the highest

priority rule among all rules the packet matches in all decision

trees.

Summary. Existing solutions build decision trees by employing

two types of actions: node cutting and rule partition. These solu-

tions mainly differ in the way they decide (i) at which node to apply

the action, (ii) which action to apply, and (iii) how to apply it (e.g.,

along which dimension(s) to partition).

SIGCOMM ’19, August 19–23, 2019, Beijing, China Eric Liang, Hang Zhu, Xin Jin, and Ion Stoica

3 A LEARNING-BASED APPROACH
In this section, we describe a learning-based approach for packet

classification. We motivate our approach, discuss the formulation of

classification as a learning problem, and then present our solution.

3.1 Why Learn?
The existing solutions for packet classification rely on hand-tuned

heuristics to build decision trees. Unfortunately, this leads to two

major limitations.

First, these heuristics often face a difficult trade-off between per-
formance and cost. Tuning such a heuristic for a given set of rules is

an expensive proposition, requiring considerable human efforts

and expertise. Worse yet, when given a different rule set, one

might have to do this all over again. Addressing this challenge

has been the main driver of a long line of research over the past

two decades [13, 29, 40, 47, 55]. Of course, one could build a gen-

eral heuristic for a large variety of rule sets. Unfortunately, such a

solution would not provide the best performance for a given set of

rules.

Second, existing algorithms do not directly optimize for a global

objective. Ideally, a good packet classification solution should op-

timize for (i) classification time, (ii) memory footprint, or (iii) a
combination between the two. Unfortunately, the existing heuris-

tics do not directly optimize for any of these objectives. At their

core, these heuristics make greedy decisions to build decision trees.

At every step, they decide on whether to cut a node or partition the

rules based on simple statistics (e.g., the size of the rules in each

dimension, number of unique ranges in each dimension), which are

poorly correlated with the desired objective. As such, the resulting

decision trees are often far from being optimal.

As we will see, a learning-based approach can address these

limitations. Such an approach can learn to generate an efficient

decision tree for a specific set of rules without the need to rely

on hand-tuned heuristics. This is not to say these heuristics do

not have value; in fact they often contain key domain knowledge

that we show can be leveraged and improved on by the learning

algorithm.

3.2 What to Learn?
Classification is a central task in machine learning literature. The

recent success of using deep neural networks (DNNs) for image

recognition, speech recognition and language translation has been

single-handedly responsible for the recent AI "revolution" [10, 22,

51].

As such, one natural solution for packet classification would be

to replace a decision tree with a DNN. In particular, such DNN

will take as input the fields of a packet header and output the

rule matching that packet. Related to our problem, prior work has

shown that DNN models can be effectively used to replace B-Trees

for indexing [21].

However, this solution has two drawbacks. First, a DNN-based

classifier does not guarantee 100% accuracy. This is because training

a DNN is fundamentally a stochastic process. Second, given a DNN

packet classification result, it is expensive to verify whether the

result is correct or not. Unlike the recently proposed learned index

solution to replace B-Trees [21], the rules in packet classification are

Agent Environment

action
At

state
St

reward
Rt Rt+1

St+1

(a)

State

Agent
Neural Network

Environment

Packet Classifier

Decision Tree

action
At

state
St

reward
Rt Rt+1

St+1

(b)

Figure 4: (a) Classic RL system. An agent takes an action,At ,
based on the current state of the environment, St , and ap-
plies it to the environment. This leads to a change in the
environment state (St+1) and a reward (Rt+1). (b) NeuroCuts
as an RL system.

multi-dimensional and overlap with each other. If a rule matches a

packet, we still need to check other rules to see if this rule has the

highest priority among all matched rules.

To avoid these drawbacks, in this paper we propose to learn

building decision trees for a given set of rules. Since the result is

still a decision tree, we can guarantee correctness, and it will be

easy to deploy the classifier with existing systems (hardware and

software) compared to a DNN.

3.3 How to Learn?
In this section, we show that the problem of building decision trees

maps naturally to RL. As illustrated in Figure 4(a), an RL system

consists of an agent that repeatedly interacts with an environment.

The agent observes the state of the environment, and then takes an

action that might change the environment’s state. The goal of the

agent is to compute a policy that maps the environment’s state to

an action in order to optimize a reward. As an example, consider an

agent playing chess. In this case, the environment is the board, the

state is the position of the pieces on the board, an action is moving

a piece on the board, and the reward could be 1 if the game is won,

and −1, if the game is lost.

This simple example illustrates two characteristics of RL that are

a particularly good fit to our problem. First, rewards are sparse, i.e.,
not every state has associated a reward. For instance, when moving

a piece we do not necessary know whether that move will result

Neural Packet Classification SIGCOMM ’19, August 19–23, 2019, Beijing, China

in a win or loss. Second, the rewards are delayed; we need to wait

until the end of the game to see whether the game was won or lost.

To deal with large state and action spaces, recent RL solutions

have employed DNNs to implement their policies. These solu-

tions, called Deep RL, have achieved remarkable results matching

humans at playing Atari games [36], and beating the Go world

champion [46]. These results have encouraged researchers to ap-

ply Deep RL to networking and systems problems, from rout-

ing, to congestion control, to video streaming, and to job schedul-

ing [4, 6, 16, 33, 34, 54, 62, 64, 65]. Building a decision tree can be

easily cast as an RL problem: the environment’s state is the current

decision tree, an action is either cutting a node or partitioning a set

of rules, and the reward is either the classification time, memory

footprint, or a combination of the two. While in some cases there

are legitimate concerns about whether Deep RL is the right solution

for the problem at hand, we identify several characteristics that

make packet classification a particularly good fit for Deep RL.

First, whenwe take an action, we do not know for sure whether it

will lead to a good decision tree or not; we only know this once the

tree is built. As a result, the rewards in our problem are both sparse
and delayed. This is naturally captured by the RL formulation.

Second, the explicit goal of RL is to maximize the reward. Thus,

unlike existing heuristics, our RL solution aims to explicitly opti-

mize the performance objective, rather than using local statistics

whose correlation to the performance objective can be tenuous.

Third, one potential concern with Deep RL algorithms is sample

complexity. In general, these algorithms require a huge number of

samples (i.e., input examples) to learn a good policy. Fortunately,

in the case of packet classification we can generate such samples

cheaply. A sample, or rollout, is a sequence of actions that builds a

decision tree with the associated reward(s) by using a given policy.

The reason we can generate these rollouts cheaply is because we

can build all these trees in software, and do so in parallel. Contrast

this with other RL-domains, such as robotics, where generating

each rollout can take a long time and requires expensive equipment

(i.e., robots).

4 NEUROCUTS DESIGN
4.1 NeuroCuts Overview
We introduce the design for NeuroCuts, a new Deep RL formula-

tion of the packet classification problem. Given a rule set and an

objective function (i.e., classification time, memory footprint, or

a combination of both), NeuroCuts learns to build a decision tree

that minimizes the objective.

Figure 4(b) illustrates the framing of NeuroCuts as an RL system:

the environment consists of the set of rules and the current decision

tree, while the agent uses a model (implemented by a DNN) that

aims to select the best cut or partition action to incrementally build

the tree. A cut action divides a node along a chosen dimension

(i.e., one of SrcIP, DstIP, SrcPort, DstPort, and Protocol) into
a number of sub-ranges (i.e., 2, 4, 8, 16, or 32 ranges), and creates

that many child nodes in the tree. A partition action on the other

hand divides the rules of a node into disjoint subsets (e.g., based

on the coverage fraction of a dimension), and creates a new child

node for each subset. The available actions for the current node

are advertised by the environment at each step, the agent chooses

among them to generate the tree, and over time the agent learns to

optimize its decisions tomaximize the reward from the environment.

Figure 5 visualizes the learning process of NeuroCuts.

4.2 NeuroCuts Training Algorithm
Recall that the goal of an RL algorithm is to compute a policy

to maximize rewards from the environment. Referring again to

Figure 4, the environment defines the action space A and state

space S . The agent starts with an initial policy, evaluates it using

multiple rollouts, and then updates it based on the results (rewards)

of these rollouts. Then, it repeats this process until satisfied with

the reward.

We first consider a strawman formulation of decision tree gener-

ation as a single Markov Decision Process (MDP). In this framing,

a rollout begins with a tree consisting of a single node. This is the

initial state, s0 ∈ S . At each step t , the agent executes an action

at ∈ A and receives a reward rt ; the environment transitions from

the current state st ∈ S to the next state st+1 ∈ S (i.e., the updated

tree and next node to process). The goal is to maximize the total

reward received by the agent, i.e.,

∑
t γ

t rt where γ is a discounting

factor used to prioritize more recent rewards.

Design challenges. While at a high level this RL formulation

seems straightforward, there are three key challenges we need

to address before we have a realizable implementation. The first

is how to encode the variable-length decision tree state st as an
input to the neural network policy. While it is possible to flatten

the tree, say, into an 1-dimensional vector, the size of such a vector

would be very large (i.e., hundreds of thousands of units). This will

require both a very large network model to process such input, and

a prohibitively large number of samples.

While recent work has proposed leveraging recurrent neural

networks (RNNs) and graph embedding techniques [58, 60, 61] to

reduce the input size, these solutions are brittle in the face of large or

dynamically growing graph structures [66]. Rather than attempting

to solve the state representation problem to deal with large inputs,

in NeuroCuts we instead take advantage of the underlying structure

of packet classification trees to design a simple and compact state

representation. This means that when the agent is deciding how to

split a node, it only observes a fixed-length representation of the

node. All needed state is encoded in the representation; no other

information about the rest of the tree is observed.

The second challenge is how to deal with the sparse and delayed

rewards incurred by the node-by-node process of building the deci-

sion tree. While we could in principle return a single reward to the

agent when the tree is complete, it would be very difficult to train

an agent in such an environment. Due to the long length of tree

rollouts (i.e., many thousands of steps), learning is only practical if

we can compute meaningful dense rewards.1 Such a dense reward

for an action would be based on the statistics of the subtree it leads

to (i.e., its depth or size).
2
This effectively reduces the delay of

the rewards from O(tree size) to O(loд(tree size)). Unfortunately,
it is not possible to compute this until the subtree is complete. To

1
Note that just returning -1 or -cutSize for each step would be a dense reward but

not particularly useful.

2
The rewards for NeuroCuts correspond to the true problem objective; we do not do

"reward engineering" since that would bias the solution.

SIGCOMM ’19, August 19–23, 2019, Beijing, China Eric Liang, Hang Zhu, Xin Jin, and Ion Stoica

0

10000

20000

30000

40000

Protocol DstPort SrcPort DstIP SrcIP

0

50

100

150

200

0

200

400

600

800

0

2500

5000

7500

10000

(a) NeuroCuts starts with a randomly initialized policy that generates poorly shaped trees (left, truncated). Over time, it learns to

reduce the tree depth and develops a more coherent strategy (center). The policy converges to a compact depth-12 tree (right) that

specializes in cutting SrcIP, SrcPort, and DstPort.

0

10000

20000

30000

40000

(b) In comparison, HiCuts produces a

depth-29 tree for this rule set that is 15×

larger and 3× slower in classification

time.

Figure 5: Visualization of NeuroCuts learning to split the fw5_1k ClassBench rule set. The x-axis denotes the tree level, and
the y-axis the number of nodes at the level. The distribution of cut dimensions per level of the tree is shown in color.

handle this, we take the somewhat unusual step of only computing

rewards for the rollout when the tree is completed, and setting

γ = 0, effectively creating a series of 1-step decision problems simi-

lar to contextual bandits [24]. However, unlike the bandit setting,

where an agent only makes a decision once per environment, these

1-step decisions are connected through the dynamics of the tree

building process. For instance, this makes NeuroCuts amenable to

techniques from the Deep RL literature such as GAE [42].

Another way of looking at the dense reward problem is that

the process of building a decision tree is not really sequential but

tree-structured (i.e., it is more accurately modeled as a branching

decision process [8, 18, 39]), and we need to account for the reward

calculations accordingly. In such a "branching" formulation, γ > 0,

but the rewards of an action are computed as an aggregation over

multiple child states produced by an action. For example, cutting a

node produces multiple child sub-nodes, and the reward calcula-

tion may involve a sum or a min over each child’s future rewards,

depending on whether we are optimizing for tree size or depth. The

1-step decision problem and branching decision process formula-

tions of NeuroCuts are roughly equivalent; in the implementation

section we describe how we adapt standard RL algorithms to run

NeuroCuts.

The final challenge is how to scale the solution to large packet

classifiers. The decision tree for a packet classifier with 100K rules

can have hundreds of thousands of nodes. The size of the tree

impedes training along several dimensions. Not only does it take

more steps to finish building a tree, but the execution time of each

action increases as there are more rules to process. The space of

trees to explore is also larger, requiring the use of larger network

models and generating more rollouts to train.

State representation. One key observation is that the action on

a tree node only depends on the node itself, so it is not necessary

to encode the entire decision tree in the environment state. Our

goal to optimize a global performance objective over the entire tree

suggests that we would need to make decisions based on the global

state. However, this does not mean that the state representation

needs to encode the entire decision tree. Given a tree node, the

action on that node only needs to make the best decision to optimize

the sub-tree rooted at that node. It does not need to consider other

tree nodes in the decision tree.

Figure 6: The NeuroCuts policy is stochastic, which enables
it to effectively explore many different tree variations dur-
ing training. Here we visualize four random tree variations
drawn from a single policy trained on the acl4_1k Class-
Bench rule set.

Formally, given tree node n, let tn and sn denote n’s classification
time and memory footprint, respectively, and Tn and Sn be the

classification time and memory footprint of the entire sub-tree

rooted at node n, respectively. Then, for a cut action, we have the
following equations:

Tn = tn +maxi ∈children(n)Ti (1)

Sn = sn + sumi ∈children(n)Si (2)

Similarly, for a partition action, we have as an upper bound on cost,

assuming serial execution:

Tn = tn + sumi ∈children(n)Ti (3)

Sn = sn + sumi ∈children(n)Si (4)

An action, a, taken on node n only needs to optimize the sub-tree

rooted at n according to the following expression,

Vn = argmaxa∈A − (c ·Tn + (1 − c) · Sn), (5)

where c is a coefficient capturing the tradeoff between classifica-

tion time and memory footprint. The negation is needed since we

want to minimize time and space complexities. We note that these

values can be computed after the tree is fully built, regardless of

the traversal order taken building the tree.

When c ∈ {0, 1}, it is easy to see that if at every tree node n we

take the action that optimizes Vn , then, by induction, we end up

optimizingVr , where r is the root of the tree. In other words, we end
up optimizing the global objective (reward) for the entire decision

tree. For 0 < c < 1 this optimization becomes approximate, but

we find empirically that c can still be used to interpolate between

the two objectives. It is important to note here that while the state

Neural Packet Classification SIGCOMM ’19, August 19–23, 2019, Beijing, China

representation only encodes current node n, action a taken for node

n is not local, as it optimizes the entire sub-tree rooted at n.
In summary, we only need to encode the current node as the

input state of the agent. This is because the environment builds

the tree node-by-node, node actions need only consider their own

state, and each node contains a subset of the rules of its parent (i.e.,

rules contained in some subspace of its parent space). Therefore,

nodes in the tree can be completely defined by the ranges they

occupy in each dimension. Given d dimensions, we use 2d numbers

to encode a tree node, which indicate the left and right boundaries

of each dimension for this node. The state also needs to describe

the partitioning at the node, which can be handled in a similar

way. We note that the set of rules for the packet classifier are not
present in the observation space. NeuroCuts learns to account for

packet classifier rules implicitly through the rewards it gets from

the environment. A full description of the NeuroCuts state and

action representations can be found in Table 1.

Training algorithm.We use an actor-critic algorithm to train the

agent’s policy [19]. This class of algorithms have been shown to

provide state-of-the-art results in many use cases [5, 35, 43], and can

be easily scaled to the distributed setting [7]. We also experimented

with Q-learning [37] based approaches, but found they did not

perform as well.

Algorithm 1 shows the pseudocode of the NeuroCuts algorithm,

which executes as follows. NeuroCuts starts with the root node of

the decision tree, s∗. The end goal is to learn an optimized stochastic

policy function π (a |s;θ) (i.e., the actor). NeuroCuts first initializes
all the parameters (line 1-6), and then runs for N rollouts to train

the policy and the value function (line 7-23). After each rollout,

it reinitializes the decision tree to the root node (line 9). It then

incrementally builds the tree by repeatedly selecting and applying

an action on each non-terminal leaf node (line 11-13) according

to the current policy. A terminal leaf node is a node in which the

number of rules is below a given threshold.

More specifically, NeuroCuts traverses the tree nodes in depth-

first-search (DFS) order (line 13), i.e., it recursively cuts the child of

the current node until the node becomes a terminal leaf. Note that

the DFS order is not essential. It is used to give a way for the agent

to find a tree node to cut. Other orders, such as the breadth-first-

search (BFS), can be used as well. After the decision tree is built, the

gradients are reset (line 14), and then the algorithm iterates over

all the tree nodes to aggregate the gradients (line 15-21). Finally,

NeuroCuts uses the gradients to update the parameters of the actor

and critic networks (line 22), and proceeds to the next rollout (line

23).

The first gradient computation (line 19) corresponds to that

for the policy gradient loss. This loss defines the direction to up-

date θ to improve the expected reward. An estimation of the state

value V (s;θv) is subtracted from the rollout reward R to reduce

the gradient variance [19]. V is trained concurrently to minimize

its prediction error (line 21). Figure 5 visualizes the learning pro-

cess of NeuroCuts to build a decision tree. The NeuroCuts policy

is stochastic, enabling it to effectively explore many different tree

variations during training, as illustrated in Figure 6.

Algorithm 1 Learning a tree-generation policy using an actor-

critic algorithm.

Input: The root node s∗ where a tree always grows from.

Output: A stochastic policy function π (a |s; θ) that outputs a branching action
a ∈ A given a node state s, and a value function V (s; θv) that outputs a value
estimate for a node state.

Main routine:
1: // Initialization
2: Randomly initialize the model parameters θ , θv
3: Maximum number of rollouts N
4: Coefficient c ∈ [0, 1] that trades off classification time vs. space

5: Reward scaling function f (x) ∈ {x, log(x)}
6: n ← 0

7: // Training
8: while n < N do
9: s ← Reset(s∗)
10: // Build a tree using the current policy
11: while s , Null do
12: a ← π (a |s ; θ)
13: s ← GrowTreeDFS(s, a)
14: Reset gradients dθ ← 0 and dθv ← 0

15: for (s, a) ∈ TreeIterator(s∗) do
16: // Compute the future rewards for the given action
17: R ← −(c · f (Time(s)) + (1 − c) · f (Space(s)))
18: // Accumulate gradients wrt. policy gradient loss
19: dθ ← dθ + ∇θ log π (a |s ; θ)(R −V (s ; θv))
20: // Accumulate gradients wrt. value function loss
21: dθv ← dθv + ∂(R −V (s ; θv))2/∂θv
22: Perform update of θ using dθ and θv using dθv .
23: n ← n + 1

Subroutines:
• Reset(s): Reset the tree s to its initial state.

• GrowTreeDFS(s, a): Apply action a to tree node s , and return the next

non-terminal leaf node in the tree in depth-first traversal order.

• TreeIterator(s): Non-terminal tree nodes of the subtree s and their taken

action.

• Time(s): Upper-bound on classification time to query the subtree s . In
non-partitioned trees this is simply the depth of the tree.

• Space(s): Memory consumption of the subtree s .

Incorporating existing heuristics. NeuroCuts can easily incor-

porate additional heuristics to improve the decision trees it learns.

One example is adding rule partition actions. In addition to the cut

action, in our NeuroCuts implementation we also allow two types

of partition actions:

(1) Simple: the current node is partitioned along a single di-

mension using a learned threshold.

(2) EffiCuts: the current node is partitioned using the EffiCuts

partition heuristic [55].

Scaling out to handle large packet classifiers. The pseudocode
in Algorithm 1 is for a single-threaded implementation of Neuro-

Cuts. This is sufficient for small classifiers. But for large classifiers

with tens or hundreds of thousands of rules, parallelism can sig-

nificantly improve the speed of training. In Figure 7 we show how

Algorithm 1 can be adapted to build multiple decision trees in

parallel.

Handling classifier updates. Packet classifiers are often updated

by network operators based on application requirements, e.g., adding

access control rules for new devices. For small updates of only a few

rules, NeuroCuts modifies the existing decision tree to reflect the

changes. New rules are added to the decision tree according to the

SIGCOMM ’19, August 19–23, 2019, Beijing, China Eric Liang, Hang Zhu, Xin Jin, and Ion Stoica

Action Space Tuple(Discrete(NumDims), Discrete(NumCutActions + NumPartitionActions))

Observation Space Box(low=0, high=1, shape=(278,))

Observation Components

[
BinaryString(Ranдedimmin) + BinaryString(Ranдedimmax) + OneHot(Partitiondimmin) + OneHot(Partitiondimmax)

]
∀dim ∈ {SrcIP ,DstIP , SrcPort ,DstPort , Protocol}
+ OneHot(EffiCutsPartitionID) + ActionMask

Table 1: NeuroCuts action and observation spaces described in OpenAI Gym format [2]. Actions are sampled from two cate-
gorical distributions that select the dimension and action to perform on the dimension respectively. Observations are encoded
in a one-hot bit vector (278 bits in total) that describes the node ranges, partitioning info, and action mask (i.e., for prohibit-
ing partitioning actions at lower levels). When not using the EffiCuts partitioner, the Partitiondim rule dimension coverage
thresholds are set to one of the following discrete levels: 0%, 2%, 4%, 8%, 16%, 32%, 64%, and 100%.

Policy Evaluation

Policy Evaluation

Policy Evaluation

Improve 𝜃, 𝜃v via
stochastic gradient
descent

Concatenate
tree rollouts

Broadcast new values of 𝜃
Figure 7: NeuroCuts can be parallelized by generating deci-
sion trees in parallel from the current policy.

existing structure; deleted rules are removed from the terminal leaf

nodes. When enough small updates accumulate or a large update

is made to the classifier, NeuroCuts re-runs training.

5 IMPLEMENTATION
Deep RL algorithms are notoriously difficult to reproduce [15]. For a

practical implementation, we prioritize the ability to (i) leverage off-
the-shelf RL algorithms, and (ii) easily scale NeuroCuts to enable

parallel training of policies.

Decision tree implementation. We implement the decision tree

data structure for NeuroCuts in Python for ease of development. To

ensure minor implementation differences do not bias our results, we

use this same data structure to implement each baseline algorithm

(e.g., HiCuts, EffiCuts, etc.), as well as to implement NeuroCuts.

Branching decision process environment. As discussed in Sec-

tion 4, the branching structure of the NeuroCuts environment poses

a challenge due to its mismatch with the MDP formulation as-

sumed by many RL algorithms. A typical RL environment defines

a transition function Pa (st+1 |st) and a reward function Ra (s, s
′).

The first difference is that the state transition function in Neuro-

Cuts returns multiple child states, instead of a single state., i.e.,

(st ,at) → {s
0

t+1, ..., s
k
t+1}. Second, the final reward for NeuroCuts

is computed by aggregating across the rewards of child states. More

precisely, for the cut action we use max aggregation for classification
time and sum aggregation for memory footprint. For the partition

action, we use sum aggregation for both metrics.

The recursive dependence of the NeuroCuts reward calculation

on all descendent state actions means that it is difficult to flatten

the tree structure of the environment into a single MDP, which

is required by existing off-the-shelf RL algorithms. Rather than

attempting to flatten the NeuroCuts environment, our solution is

to instead treat the NeuroCuts environment as a series of indepen-
dent 1-step decision problems, each of which yields an “immediate”

reward. The actual reward for these 1-step decisions is calculated

once the relevant sub-tree rollout is complete.

For example, consider a NeuroCuts tree rollout from a root node

s1. Based on πθ the agent decides to take action a1 to split s1 into s2,
s3, and s4. Of these child nodes, only s4 needs to be further split (via
a2), into s5 and s6, which finishes the tree. The experiences collected
from this rollout consist of two independent 1-step rollouts: (s1, a1)
and (s4, a2). Taking the time-space coefficient c = 1 and discount

factor γ = 1 for simplicity, the total reward R for each rollout would

be R = 2 and R = 1 respectively.

Multi-agent implementation. Since these 1-step decisions are

logically independent of each other, NeuroCuts execution can be re-

alized as a multi-agent environment, where each node’s 1-decision

problem is taken by an independent “agent” in the environment.

Since we want to learn a single policy, πθ , for all states, the agents
must be configured to share the same underlying stochastic neural

network policy. This ensures all experiences go towards optimizing

the single shared policy πθ . When using an actor-critic algorithm

to optimize the policies of such agents, the relevant loss calcula-

tions induced by this multi-agent realization are identical to those

presented in Algorithm 1.

There are several ways to implement the 1-step formulation of

NeuroCuts while leveraging off-the-shelf RL libraries. In Algorithm

1 we show standalone single-threaded pseudocode assuming a sim-

ple actor-critic algorithm is used. In our experiments, we use the

multi-agent API provided by Ray RLlib [30], which implements

parallel simulation and optimization of such RL environments.

Performance. We found that NeuroCuts often converges to its

optimal solution within just a few hundred rollouts. The size of the

rule set does not significantly affect the number of rollouts needed

for convergence, but affects the running time of each rollout. For

smaller problems (e.g., 1000 rules), this may be within a fewminutes

of CPU time. The computational overhead for larger problem scales

with the size of the classifier, i.e., linearly with the number of rules

that must be scanned per action taken to grow the tree. The bulk

of time in NeuroCuts is spent executing tree cut actions. This is

largely an artifact of our Python implementation, which iterates

Neural Packet Classification SIGCOMM ’19, August 19–23, 2019, Beijing, China

over each rule present in a node on each cut action. An optimized

C++ implementation of the decision tree would further reduce the

training time.

5.1 Optimizations

Rollout truncation.During the initial phase of learning, the unop-
timized policy will create excessively large trees. Since NeuroCuts

does not start learning until a tree is complete, it is necessary to

truncate rollouts to speed up the initial phase of training. For larger

classifiers, we found it necessary to allow rollouts of up to 15000

actions in length.

Depth truncation. Since valid solutions never involve trees of

depth greater than a few hundred, we also truncate trees once they

reach a certain depth. In our experience, depth truncation is only

a factor early on in learning; NeuroCuts quickly learns to avoid

creating very deep trees.

Proximal Policy Optimization. For better stability and more

sample-efficient learning, in our experiments we choose to use

Proximal Policy Optimization (PPO) [43]. PPO implements an actor-

critic style loss with entropy regularization and a clipped surrogate

objective, which enables improved exploration and sample effi-

ciency. We report the PPO hyperparameters we used in Table 2.

It is important to note however that this particular choice of RL

algorithm is not fundamental to NeuroCuts.

6 EVALUATION
In the evaluation, we seek to answer the following questions:

(1) How does NeuroCuts compare to the state-of-the-art ap-

proaches in terms of classification time and memory foot-

print? (Section 6.1 and 6.2)

(2) Beyond tabula rasa learning, can NeuroCuts effectively incor-
porate and improve upon pre-engineered heuristics? (Section

6.3)

(3) How sensitive is NeuroCuts to the hyperparameters of the

neural network architecture (Section 6.4), and the time-space

coefficient c (Section 6.5)?

For the results presented in the next sections, we evaluated

NeuroCuts within the space of hyperparameters shown in Table 2.

We did not otherwise perform extensive hyperparameter tuning;

in fact we use close to the default hyperparameter configuration of

the PPO algorithm. The notable hyperparameters we swept over

include:

• Allowed top-node partitioning (none, simple, and the Effi-

Cuts heuristic), which strongly biases NeuroCuts towards

learning trees optimized for time (none) vs space (EffiCuts),

or somewhere in the middle (simple).

• The max number of timesteps allowed per rollout before

truncation. It must be large enough to enable solving the

problem, but not so large that it slows down the initial phase

of training.

• We also experimented with values for the time-space tradeoff

coefficient c ∈ {0, 0.1, 0.5, 1}. When c < 1, we used log(x)
as the reward scaling function to simplify the combining of

the time and space rewards.

We ran NeuroCuts on m4.16xl AWS machines, with four CPU

cores used per NeuroCuts instance to speed up the experiment.

Because the neural network model and data sizes produced by

NeuroCuts are quite small (e.g., in contrast to image observations

from Atari games), the use of GPUs is not necessary. Our main

training bottleneck was the Python implementation of the decision

tree. We ran each NeuroCuts instance for up to 10 million timesteps

(i.e., up to a couple thousand generated trees in total), or until

convergence.

We compare NeuroCuts with four hand-tuned algorithms: Hi-

Cuts [13], HyperCuts [47], EffiCuts [55], and CutSplit [29]. We use

the standard benchmark, ClassBench [52], to generate packet classi-

fiers with different characteristics and sizes. The benchmarkmetrics

are those from prior work: classification time (tree depth) and mem-

ory footprint (bytes per rule). Since we use the same underlying tree

data structure for all algorithms, a lesser depth virtually guarantees

more efficient traversal, and the same is true for memory footprint.

We find that NeuroCuts significantly improves over all base-

lines in classification time while also generating significantly more

compact trees. NeuroCuts is also competitive when optimizing

for memory, with a 25% median space improvement over EffiCuts

without compromising in time.

6.1 Time-Optimized NeuroCuts
In Figure 8, we compare the best time-optimized trees generated

by NeuroCuts against HiCuts, HyperCuts, EffiCuts, and CutSplit in

the ClassBench classifiers. NeuroCuts provides a 20%, 38%, 52% and

56% median improvement over HiCuts, HyperCuts, EffiCuts, and

CutSplit respectively. NeuroCuts also does better than the mini-

mum of all baselines in 70% of the cases, with a median all-baseline

improvement of 18%, average improvement of 12%, and best-case

improvement of 58%. These time-optimized trees generally corre-

spond to NeuroCuts runs with either no partitioning action or the

simple top-node partitioning action.

6.2 Space-Optimized NeuroCuts
We again compare NeuroCuts against the baselines in Figure 9, this

time selecting the most space-optimized trees and comparing the

memory footprint (bytes per rule). As expected, NeuroCuts does

significantly better than HiCuts and HyperCuts since it can learn

to leverage the partition action. NeuroCut’s space-optimized trees

show a 40% median and 44% mean improvement over EffiCuts. In

our experiments NeuroCuts does not usually outperform CutSplit

in memory footprint, with a 26% higher median memory usage

compared to CutSplit, though the best case improvement is still 3×

(66%) over all baselines.
Separately, we also note that the memory footprints of the best

time-optimized trees generated by NeuroCuts are significantly lower
than those generated by HiCuts and HyperCuts, with a >100×

median space improvement along with the better classification

times reported in Section 6.1. However, these time-optimized trees

are not competitive in space with the space-optimized NeuroCuts,

EffiCuts and CutSplit trees.

SIGCOMM ’19, August 19–23, 2019, Beijing, China Eric Liang, Hang Zhu, Xin Jin, and Ion Stoica
C

la
ss

ifi
ca

tio
n

Ti
m

e

0

20

40

60

ac
l1

1k

ac
l2

1k

ac
l3

1k

ac
l4

1k

ac
l5

1k

ac
l1

10
k

ac
l2

10
k

ac
l3

10
k

ac
l4

10
k

ac
l5

10
k

ac
l1

10
0k

ac
l2

10
0k

ac
l3

10
0k

ac
l4

10
0k

ac
l5

10
0k

fw
1 1

k

fw
2 1

k

fw
3 1

k

fw
4 1

k

fw
5 1

k

fw
1 1

0k

fw
2 1

0k

fw
3 1

0k

fw
4 1

0k

fw
5 1

0k

fw
1 1

00
k

fw
2 1

00
k

fw
3 1

00
k

fw
4 1

00
k

fw
5 1

00
k

ipc
1 1

k

ipc
2 1

k

ipc
1 1

0k

ipc
2 1

0k

ipc
1 1

00
k

ipc
2 1

00
k

HiCuts HyperCuts EffiCuts CutSplit NeuroCuts

Figure 8: Classification time (tree depth) for HiCuts, HyperCuts, EffiCuts, and NeuroCuts (time-optimized). We omit four
entries for HiCuts and HyperCuts that did not complete after more than 24 hours.

Figure 9: Memory footprint (bytes per rule) used for HiCuts, HyperCuts, EffiCuts, and NeuroCuts (space-optimized). We omit
four entries for HiCuts and HyperCuts that did not complete after more than 24 hours.

6.3 Improving on EffiCuts
In Figure 10 we examine a set of 36 NeuroCuts trees (one tree for

each ClassBench classifier) generated by NeuroCuts with the Effi-

Cuts partition action. This is in contrast with the prior experiments

that selected trees optimized for either space or time alone. On this

36-tree set, there is a median space improvement of 29% relative to

EffiCuts; median classification time is about the same. This shows

that NeuroCuts is able to effectively incorporate and improve on

pre-engineered heuristics such as the EffiCuts top-level partition

function.

Surprisingly, NeuroCuts is able to outperform EffiCuts despite

the fact that NeuroCuts does not use multi-dimensional cut actions.

When we evaluate EffiCuts with these cut types disabled, the mem-

ory advantage of NeuroCuts widens to 67% at the median. This

suggests that NeuroCuts could further improve its performance

if we also incorporate multi-dimensional cut actions via paramet-

ric action encoding techniques [9]. It would also be interesting

to, besides adding actions to NeuroCuts, consider postprocessing

steps such as resampling that can be used to further improve the

stochastic policy output.

6.4 Neural Network Architecture
To better understand the influence of the neural network archi-

tecture on NeuroCuts performance, we conduct an ablation study

where the network size is reduced from 512x512 (hundreds of thou-

sands of parameters) all the way down to 16x16 (a couple hun-

dred parameters). We also consider the case where the network

is trivial and does not process the observation at all, similar to a

non-contextual bandit. For this study we run a single sweep across

only these architecture hyperparameters, keeping all the others

fixed, and use the simple partition method.

The results are shown in Figure 11. We observe that while the

larger 64x64 network consistently outperforms 16x16, at 512x512

performance starts to be impacted due to the larger number of

Neural Packet Classification SIGCOMM ’19, August 19–23, 2019, Beijing, China
Sp

ac
e

Im
pr

ov
em

en
t (

1
- a

/b
)

0

0.25

0.5

0.75

1

(a) NeuroCuts can build on the EffiCuts partitioner to generate trees up to 10× (90%)

more space efficient than EffiCuts. In this experiment NeuroCuts did as well or better

than EffiCuts on all 36 rule sets.

Ti
m

e
Im

pr
ov

em
en

t (
1

- a
/b

)

-0.4

-0.2

0

0.2

0.4

(b) NeuroCuts with the EffiCuts partitioner generates trees with about the same time

efficiency as EffiCuts.

Figure 10: Sorted rankings of NeuroCuts’ improvement over
EffiCuts in the ClassBench benchmark. Here NeuroCuts is
run with only the EffiCuts partition method allowed. Posi-
tive values indicate improvements.

learnable parameters.
3
Interestingly, while the bias-only network

did the worst, it still was able to generate reasonably compact

trees in many cases. This suggests that NeuroCuts may operate by

first learning a random distribution of actions that leads to a basic

solution, and then leveraging the capacity of its neural network to

specialize the action distribution to different portions of the rule

space.

6.5 Tuning Time vs Space
Finally, in Figure 12 we sweep across a range of values of c for

NeuroCuts with the simple partition method and log(x) reward

scaling. We plot the ClassBench median of the best classification

times and bytes per rule found for each classifier. We find that

classification time improves by 2× as c → 1, while the number of

bytes per rule improves 2× as c → 0. This shows that c is effective
in controlling the tradeoff between space and time.

7 RELATEDWORK

Packet classification. Packet classification is a long-standing prob-
lem in computer networking. Decision-tree based algorithms are

a major class of algorithmic solutions. Existing solutions rely on

hand-tuned heuristics to build decision trees. HiCuts [13] is a pio-

neering work in this space. It cuts the space of each node in one

dimension to create multiple equal-sized subspaces to separate rules.

HyperCuts [47] extends HiCuts by allowing cutting in multiple di-

mensions at each node. HyperSplit [40] combines the advantages

3
We note that these results might not hold for different hyperparameters, e.g., if

allowed longer training periods, larger networks may dominate.

Normalized Classification Time (lower is better)

N
et

w
or

k
A

rc
hi

te
ct

ur
e

512x512

64x64

16x16

bias-only

0 0.5 1 1.5 2 2.5

1k 10k 100k

Figure 11: Comparison of the mean best classification time
achieved by NeuroCuts across different network architec-
tures and groups of classifiers. The bias-only architecture
refers to a trivial neural network that does not process the
observation at all and emits a fixed action probability dis-
tribution (i.e., a pure bandit). Results are normalized within
classifier groups so that the best tree has a normalized time
of 1. Rulesets that did not converge to a valid tree were as-
signed a time of 100 prior to normalization.

10

40

0 1

Median classification time Median bytes per rule

value of c

Figure 12: The classification time improves by 2× as the time-
space coefficient c → 1, and conversely, number of bytes per
rule improves 2× as c → 0.

of rule-based space decomposition and local-optimized recursion to

guarantee worst-case classification time and reduce memory foot-

print. EffiCuts [55] introduces four heuristics, including separable

trees, tree merging, equal-dense cuts and node co-location, to re-

duce rule replication and imbalance cutting. CutSplit [29] integrates

equal-sized cutting and equal-dense cutting to optimize decision

trees. Besides decision-tree based algorithms, there are also other

algorithms proposed for packet classification, such as tuple space

search [49], RFC [12] and DCFL [53]. These algorithms are not as

popular as decision-tree based algorithms, because they are either

too slow or consume too much memory. There are also solutions

that exploit specialized hardware such as TCAMs, GPUs and FP-

GAs to support packet classification [17, 23, 31, 32, 41, 48, 50, 57].

Compared to existing work, NeuroCuts is an algorithmic solution

that applies Deep RL to generate efficient decision trees, with the

capability to incorporate and improve on existing heuristics as

needed.

Decision trees for machine learning. There have been several

proposals to use deep learning to optimize the performance of

decision trees for machine learning problems [20, 38, 59]. In these

settings, the objective is maximizing test accuracy. In contrast,

packet classification decision trees provide perfect accuracy by

SIGCOMM ’19, August 19–23, 2019, Beijing, China Eric Liang, Hang Zhu, Xin Jin, and Ion Stoica

construction, and the objective is minimizing classification time

and memory usage.

Structured data in deep learning. There have many recent pro-

posals towards applying deep learning to process and generate

tree and graph data structures [11, 58, 60, 61, 63, 66]. NeuroCuts

sidesteps the need to explicitly process graphs, instead exploiting

the structure of the problem to encode agent state into a compact

fixed-length representation.

Deep reinforcement learning. Deep RL leverages the modeling

capacity of deep neural networks to extend classical RL to domains

with large, high-dimensional state and action spaces. DQN [36, 37,

56] is one of the earliest successes of Deep RL, and shows how to

learn control policies from high-dimensional sensory inputs and

achieve human-level performance in Atari 2600 games. A3C, PPO,

and IMPALA [7, 35, 43] scale actor-critic algorithms to leverage

many parallel workers. AlphaGo [44], AlphaGo Zero [46] and Alp-

haZero [45] show that Deep RL algorithms can achieve superhuman

performance in many challenging games like Go, chess and shogi.

Deep RL has also been applied to many other domains like natural

language processing [28] and robotics [25–27]. NeuroCuts works

in a discrete environment and applies Deep RL to learn decision

trees for packet classification.

Deep learning for networking and systems. Recently there has
been an uptake in applying deep learning to networking and sys-

tems problems [4, 6, 16, 33, 34, 54, 62, 64, 65]. NAS [62] utilizes

client computation and deep neural networks to improve the video

quality independent to the available bandwidth. Pensieve [34] gen-

erates adaptive bitrate algorithms using Deep RL without relying

on pre-programmed models or assumptions about the environment.

Valadarsky et al. [54] applies Deep RL to learn network routing.

Chinchali et al. [4] uses Deep RL for traffic scheduling in cellu-

lar networks. AuTO [3] scales Deep RL for datacenter-scale traffic

optimization. There are also many solutions that apply deep rein-

forcement learning to congestion control [6, 16, 64] and resource

management [33]. We explore the application of Deep RL to packet

classification, and propose a new algorithm to learn decision trees

with succinct encoding and scalable training mechanisms.

8 CONCLUSION
We present NeuroCuts, a simple and effective Deep RL formulation

of the packet classification problem. NeuroCuts provides signifi-

cant improvements on classification time and memory footprint

compared to state-of-the-art algorithms. It can easily incorporate

pre-engineered heuristics to leverage their domain knowledge, op-

timize for flexible objectives, and generates decision trees which

are easy to test and deploy in any environment.

We hope NeuroCuts can inspire a new generation of learning-

based algorithms for packet classification. As a concrete example,

NeuroCuts currently optimizes for the worst-case classification

time or memory footprint. By considering a specific traffic pattern,

NeuroCuts can be extended to other objectives such as average

classification time. This would allow NeuroCuts to not only opti-

mize for a specific classifier but also for a specific traffic pattern in

a given deployment.

9 ACKNOWLEDGEMENTS
We thank our shepherd Kensuke Fukuda and the reviewers for their

valuable feedback. Hang Zhu and Xin Jin are supported in part by

NSF grants CRII-1755646 and CNS-1813487, Facebook Communica-

tions Networking Research Award, and Amazon AWS Cloud Cred-

its for Research Program. Eric Liang and Ion Stoica are supported in

part by NSF CISE Expeditions Award CCF-1730628, and gifts from

Alibaba, Amazon Web Services, Ant Financial, Arm, CapitalOne,

Ericsson, Facebook, Google, Huawei, Intel, Microsoft, Scotiabank,

Splunk and VMware.

This work does not raise any ethical issues.

Hyperparameter Value
Time-space coefficient c <set by user>

Top-node partitioning {none, simple, EffiCuts}

Reward scaling function f {x, log(x)}

Max timesteps per rollout {1000, 5000, 15000}

Max tree depth {100, 500, inf}

Max timesteps to train 10000000

Max timesteps per batch 60000

Model type fully-connected

Model nonlinearity tanh

Model hidden layers {256x256, 512x512}

Weight sharing between θ ,θv {true, false}

Learning rate 0.00005

Discount factor γ 1.0

PPO entropy coefficient 0.01

PPO clip param 0.3

PPO VF clip param 10.0

PPO KL target 0.01

SGD iterations per batch 30

SGD minibatch size 1000

Table 2: NeuroCuts hyperparameters. Values in curly braces
denote a space of values searched over during evaluation.
We found that the most sensitive hyperparameter is the top-
node partitioning, which greatly affects the structure of the
search problem. It is also important to ensure that the roll-
out timestep limit and model used are sufficiently large for
the problem.

Neural Packet Classification SIGCOMM ’19, August 19–23, 2019, Beijing, China

REFERENCES
[1] Florin Baboescu, Sumeet Singh, and George Varghese. 2003. Packet classification

for core routers: Is there an alternative to CAMs?. In IEEE INFOCOM.

[2] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schul-

man, Jie Tang, and Wojciech Zaremba. 2016. OpenAI gym. arXiv preprint
arXiv:1606.01540 (2016).

[3] Li Chen, Justinas Lingys, Kai Chen, and Feng Liu. 2018. AuTO: Scaling Deep

Reinforcement Learning for Datacenter-Scale Automatic Traffic Optimization. In

ACM SIGCOMM.

[4] Sandeep Chinchali, Pan Hu, Tianshu Chu, Manu Sharma, Manu Bansal, Rakesh

Misra, Marco Pavone, and Sachin Katti. 2018. Cellular network traffic scheduling

with deep reinforcement learning. In AAAI.
[5] Ekin Dogus Cubuk, Barret Zoph, Dandelion Mané, Vijay Vasudevan, and Quoc V.

Le. 2018. AutoAugment: Learning Augmentation Policies from Data. CoRR
(2018).

[6] MoDong, TongMeng, Doron Zarchy, Engin Arslan, Yossi Gilad, Brighten Godfrey,

and Michael Schapira. 2018. PCC Vivace: Online-Learning Congestion Control.

In USENIX NSDI.
[7] Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Volodymir Mnih,

Tom Ward, Yotam Doron, Vlad Firoiu, Tim Harley, Iain Dunning, Legg Shane,

and Kavukcuoglu Koray. 2018. IMPALA: Scalable distributed Deep-RL with

importance weighted actor-learner architectures. arXiv preprint arXiv:1802.01561
(2018).

[8] Kousha Etessami and Mihalis Yannakakis. 2005. Recursive Markov decision pro-

cesses and recursive stochastic games. In International Colloquium on Automata,
Languages, and Programming. Springer, 891–903.

[9] Jason Gauci, Edoardo Conti, Yitao Liang, Kittipat Virochsiri, Yuchen He, Zachary

Kaden, Vivek Narayanan, and Xiaohui Ye. 2018. Horizon: Facebook’s Open Source

Applied Reinforcement Learning Platform. arXiv preprint arXiv:1811.00260 (2018).
[10] Alex Graves, Abdel-Rahman Mohamed, and Geoffrey Hinton. 2013. Speech

recognition with deep recurrent neural networks. In ICASSP.
[11] Arthur Guez, Théophane Weber, Ioannis Antonoglou, Karen Simonyan, Oriol

Vinyals, Daan Wierstra, Rémi Munos, and David Silver. 2018. Learning to search

with MCTSnets. arXiv preprint arXiv:1802.04697 (2018).

[12] Pankaj Gupta and Nick McKeown. 1999. Packet classification on multiple fields.

SIGCOMM CCR (1999).

[13] Pankaj Gupta and Nick McKeown. 1999. Packet classification using hierarchical

intelligent cuttings. In Hot Interconnects.
[14] Pankaj Gupta and Nick McKeown. 2001. Algorithms for packet classification.

(2001).

[15] Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup,

and David Meger. 2017. Deep Reinforcement Learning that Matters. CoRR (2017).

[16] Nathan Jay, Noga H. Rotman, P. Godfrey, Michael Schapira, and Aviv Tamar. 2018.

Internet Congestion Control via Deep Reinforcement Learning. arXiv preprint
arXiv:1810.03259 (2018).

[17] Kirill Kogan, Sergey Nikolenko, Ori Rottenstreich, William Culhane, and Patrick

Eugster. 2014. SAX-PAC (scalable and expressive packet classification). In SIG-
COMM CCR.

[18] AN Kolmogorov and NA Dmitriev. 1947. Stochastic branching processes. In

Doklady Akademi Nauk SSSR, Vol. 56. 7–10.
[19] Vijay R. Konda and John N. Tsitsiklis. 2000. Actor-critic algorithms. In Advances

in neural information processing systems.
[20] Peter Kontschieder, Madalina Fiterau, Antonio Criminisi, and Samuel Rota Bulo.

2015. Deep Neural Decision Forests. In The IEEE International Conference on
Computer Vision (ICCV).

[21] Tim Kraska, Alex Beutel, Ed H. Chi, Jeffrey Dean, and Neoklis Polyzotis. 2018.

The case for learned index structures. In SIGMOD.
[22] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2012. Imagenet classifica-

tion with deep convolutional neural networks. In Advances in neural information
processing systems.

[23] Karthik Lakshminarayanan, Anand Rangarajan, and Srinivasan Venkatachary.

2005. Algorithms for advanced packet classification with ternary CAMs. In

SIGCOMM CCR.
[24] John Langford and Tong Zhang. 2008. The epoch-greedy algorithm for multi-

armed bandits with side information. In Advances in neural information processing
systems. 817–824.

[25] Ian Lenz, Honglak Lee, and Ashutosh Saxena. 2015. Deep learning for detecting

robotic grasps. The International Journal of Robotics Research (2015).

[26] Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. 2016. End-to-end

training of deep visuomotor policies. The Journal of Machine Learning Research
(2016).

[27] Sergey Levine, Peter Pastor, Alex Krizhevsky, Julian Ibarz, and Deirdre Quillen.

2018. Learning hand-eye coordination for robotic grasping with deep learning

and large-scale data collection. The International Journal of Robotics Research
(2018).

[28] Jiwei Li, Will Monroe, Alan Ritter, Michel Galley, Jianfeng Gao, and Dan Jurafsky.

2016. Deep reinforcement learning for dialogue generation. arXiv preprint

arXiv:1606.01541 (2016).
[29] Wenjun Li, Xianfeng Li, Hui Li, and Gaogang Xie. 2018. CutSplit: A Decision-

Tree Combining Cutting and Splitting for Scalable Packet Classification. In IEEE
INFOCOM.

[30] Eric Liang, Richard Liaw, Robert Nishihara, Philipp Moritz, Roy Fox, Ken Gold-

berg, Joseph Gonzalez, Michael Jordan, and Ion Stoica. 2018. RLlib: Abstractions

for distributed reinforcement learning. In ICML.
[31] Alex X Liu, Chad R Meiners, and Yun Zhou. 2008. All-match based complete

redundancy removal for packet classifiers in TCAMs. In IEEE INFOCOM.

[32] Yadi Ma and Suman Banerjee. 2012. A smart pre-classifier to reduce power

consumption of TCAMs for multi-dimensional packet classification. In ACM
SIGCOMM.

[33] Hongzi Mao, Mohammad Alizadeh, Ishai Menache, and Srikanth Kandula. 2016.

Resource management with deep reinforcement learning. In ACM SIGCOMM
HotNets Workshop.

[34] Hongzi Mao, Ravi Netravali, and Mohammad Alizadeh. 2017. Neural adaptive

video streaming with pensieve. In ACM SIGCOMM.

[35] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timo-

thy Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. 2016. Asynchro-

nous methods for deep reinforcement learning. In ICML.
[36] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis

Antonoglou, Daan Wierstra, and Martin Riedmiller. 2013. Playing Atari with

deep reinforcement learning. arXiv preprint arXiv:1312.5602 (2013).
[37] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness,

Marc G. Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg

Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen

King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis. 2015.

Human-level control through deep reinforcement learning. Nature (2015).
[38] Mohammad Norouzi, Maxwell Collins, Matthew A. Johnson, David J. Fleet, and

Pushmeet Kohli. 2015. Efficient non-greedy optimization of decision trees. In

Advances in Neural Information Processing Systems. 1729–1737.
[39] Stanley R Pliska. 1976. Optimization of multitype branching processes. Manage-

ment Science 23, 2 (1976), 117–124.
[40] Yaxuan Qi, Lianghong Xu, Baohua Yang, Yibo Xue, and Jun Li. 2009. Packet

classification algorithms: From theory to practice. In IEEE INFOCOM.

[41] Yun R. Qu, Hao H. Zhang, Shijie Zhou, and Viktor K. Prasanna. 2015. Opti-

mizing many-field packet classification on FPGA, multi-core general purpose

processor, and GPU. In ACM/IEEE Symposium on Architectures for Networking
and Communications Systems.

[42] John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel.

2015. High-dimensional continuous control using generalized advantage estima-

tion. arXiv preprint arXiv:1506.02438 (2015).
[43] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.

2017. Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347
(2017).

[44] David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George

Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershel-

vam, Marc Lanctot, Sander Dieleman, Dominik Grewe, John Nham, Nal Kalch-

brenner, Ilya Sutskever, Timothy Lillicrap, Madeleine Leach, Koray Kavukcuoglu,

Graepel Thore, and Demis Hassabis. 2016. Mastering the game of Go with deep

neural networks and tree search. Nature (2016).
[45] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew

Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Grae-

pel, Timothy Lillicrap, Karen Simonyan, and Demis Hassabis. 2018. A general

reinforcement learning algorithm that masters chess, shogi, and Go through

self-play. Science (2018).
[46] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja

Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton,

Yutian Chen, Timothy Lillicrap, Fan Hui, Laurent Sifre, George van den Driessche,

Thore Graepel, and Demis Hassabis. 2017. Mastering the game of Go without

human knowledge. Nature (2017).
[47] Sumeet Singh, Florin Baboescu, George Varghese, and Jia Wang. 2003. Packet

classification using multidimensional cutting. In ACM SIGCOMM.

[48] Ed Spitznagel, David Taylor, and Jonathan Turner. 2003. Packet classification

using extended TCAMs. In IEEE ICNP.
[49] Venkatachary Srinivasan, Subhash Suri, and George Varghese. 1999. Packet

classification using tuple space search. In SIGCOMM CCR.
[50] Weibin Sun and Robert Ricci. 2013. Fast and flexible: parallel packet processing

with GPUs and click. In ACM/IEEE Symposium on Architectures for Networking
and Communications Systems.

[51] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014. Sequence to sequence learning

with neural networks. In Advances in neural information processing systems.
[52] David E. Taylor and Jonathan S Turner. 2005. ClassBench: A packet classification

benchmark. In IEEE INFOCOM.

[53] David E. Taylor and Jonathan S Turner. 2005. Scalable packet classification using

distributed crossproducing of field labels. In IEEE INFOCOM.

[54] Asaf Valadarsky, Michael Schapira, Dafna Shahaf, and Aviv Tamar. 2017. Learning

to route with Deep RL. In NIPS Deep Reinforcement Learning Symposium.

SIGCOMM ’19, August 19–23, 2019, Beijing, China Eric Liang, Hang Zhu, Xin Jin, and Ion Stoica

[55] Balajee Vamanan, Gwendolyn Voskuilen, and T. N. Vijaykumar. 2010. EffiCuts:

Optimizing Packet Classification for Memory and Throughput. In ACM SIG-
COMM.

[56] Hado Van Hasselt, Arthur Guez, and David Silver. 2016. Deep Reinforcement

Learning with Double Q-Learning. In AAAI.
[57] Matteo Varvello, Rafael Laufer, Feixiong Zhang, and TV Lakshman. 2016. Multi-

layer packet classification with graphics processing units. IEEE/ACM Transactions
on Networking (2016).

[58] Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng Chen. 2014. Knowledge

Graph Embedding by Translating on Hyperplanes.. In AAAI.
[59] Zheng Xiong, Wenpeng Zhang, and Wenwu Zhu. 2017. Learning decision trees

with reinforcement learning. In NIPS Workshop on Meta-Learning.
[60] Shuicheng Yan, Dong Xu, Benyu Zhang, Hong-Jiang Zhang, Qiang Yang, and

Stephen Lin. 2007. Graph embedding and extensions: A general framework for

dimensionality reduction. IEEE transactions on pattern analysis and machine
intelligence (2007).

[61] Jianchao Yang, Shuicheng Yang, Yun Fu, Xuelong Li, and Thomas Huang. 2008.

Non-negative graph embedding. In CVPR.
[62] Hyunho Yeo, Youngmok Jung, Jaehong Kim, Jinwoo Shin, and Dongsu Han. 2018.

Neural adaptive content-aware internet video delivery. In USENIX OSDI.
[63] Jiaxuan You, Bowen Liu, Rex Ying, Vijay Pande, and Jure Leskovec. 2018. Graph

Convolutional Policy Network for Goal-Directed Molecular Graph Generation.

arXiv preprint arXiv:1806.02473 (2018).
[64] Yasir Zaki, Thomas Pötsch, Jay Chen, Lakshminarayanan Subramanian, and

Carmelita Görg. 2015. Adaptive congestion control for unpredictable cellular

networks. In SIGCOMM CCR.
[65] Ying Zheng, Ziyu Liu, Xinyu You, Yuedong Xu, and Junchen Jiang. 2018. Demys-

tifying Deep Learning in Networking. In ACM SIGCOMM APNet Workshop.
[66] Jie Zhou, Ganqu Cui, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, and Maosong

Sun. 2018. Graph Neural Networks: A Review of Methods and Applications.

arXiv preprint arXiv:1812.08434 (2018).

	Abstract
	1 Introduction
	2 Background
	2.1 Packet Classification
	2.2 Decision Tree Algorithms

	3 A Learning-Based Approach
	3.1 Why Learn?
	3.2 What to Learn?
	3.3 How to Learn?

	4 NeuroCuts Design
	4.1 NeuroCuts Overview
	4.2 NeuroCuts Training Algorithm

	5 Implementation
	5.1 Optimizations

	6 Evaluation
	6.1 Time-Optimized NeuroCuts
	6.2 Space-Optimized NeuroCuts
	6.3 Improving on EffiCuts
	6.4 Neural Network Architecture
	6.5 Tuning Time vs Space

	7 Related Work
	8 Conclusion
	9 Acknowledgements
	References

