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ABSTRACT
Network measurement remains a missing piece in today’s software
packet processing platforms. Sketches provide a promising building
block for filling this void bymonitoring every packet with fixed-size
memory and bounded errors. However, our analysis shows that
existing sketch-based measurement solutions suffer from severe
performance drops under high traffic load. Although sketches
are efficiently designed, applying them in network measurement
inevitably incurs heavy computational overhead.

We present SketchVisor, a robust network measurement frame-
work for software packet processing. It augments sketch-based
measurement in the data plane with a fast path, which is activated
under high traffic load to provide high-performance local measure-
ment with slight accuracy degradations. It further recovers accurate
network-wide measurement results via compressive sensing. We
have built a SketchVisor prototype on top of Open vSwitch. Ex-
tensive testbed experiments show that SketchVisor achieves high
throughput and high accuracy for a wide range of network mea-
surement tasks and microbenchmarks.
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1 INTRODUCTION
Software packet processing is an important pillar of modern data
center networks. It emphasizes programmability and extensibility,
thereby supporting new network management features. Extensive
work has been undertaken to improve software-based packet for-
warding performance [16, 45]. Recent trends on network function
virtualization (NFV) extend traditional layer 2-3 packet processing
to more sophisticated middlebox functionalities via software-based
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control decisions [25]. Software switches, such as Open vSwitch
[41], Microsoft Hyper-V Virtual Switch [32], and Cisco Nexus 1000V
Virtual Switch [10], are now common building blocks of virtualiza-
tion software and widely deployed in modern public and private
clouds.

Network measurement is crucial to managing software packet
processing platforms. Its goal is to collect essential network traffic
statistics (e.g., heavy hitters, traffic anomalies, flow distribution,
and traffic entropy) to help network operators make better network
management decisions on traffic engineering, performance diag-
nosis, and attack prevention. Although network measurement has
been well studied in IP networks, today’s software switches, sur-
prisingly, only support limited network measurement. For example,
Open vSwitch only provides sampling-based measurement tools
based on NetFlow [40] and sFlow [49], yet packet sampling inher-
ently suffers from low measurement accuracy and achieves only
coarse-grained measurement [28, 56]. While we can improve mea-
surement accuracy by increasing the sampling rate or even record-
ing all traffic (e.g., SPAN [51]), the resource usage will dramatically
increase and pose scalability issues in high-speed networks.

Sketches provide an alternative to achieving fine-grained mea-
surement. Unlike packet sampling, sketches are compact data
structures that can summarize traffic statistics of all packets with
fixed-size memory, while incurring only bounded errors. Many
sketch-based solutions have been proposed in the literature to
address different trade-offs between measurement accuracy and
resource usage [13, 19, 22, 35, 46]. Although such proposals are
not widely deployed in production IP networks due to the need
of re-engineering switching ASIC, the programmability nature of
software switches makes the deployment of sketch-based measure-
ment in software packet processing viable. With the theoretical
guarantees of resource usage of sketches, it is expected that sketch-
based measurement incurs low overhead to the software packet
processing pipeline.

Unfortunately, contrary to conventional wisdom, our analysis
(§2.2) shows that existing representative sketch-based solutions in
software actually consume substantial CPU resources, which could
otherwise be used by other co-located applications (e.g., virtual ma-
chines or containers in virtualized environments). The root cause
is that sketches are only primitives. While they are simple and
efficient by design, applying them into practical network measure-
ment requires additional extensions or components that often incur
heavy computations. As modern data center networks now scale
to 10Gbps or even higher speeds, sketch-based measurement will
require excessive CPU resources to meet the line-rate requirement.
Even though data centers do not always see high link utilization
in practice [3], achieving line-rate measurement remains critical,
especially in the face of traffic bursts, which indicate the presence
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of hot-spots or even attacks. Thus, not only do we require a mea-
surement solution be resource-efficient under high traffic load, but
also to accurately reason about the behavior of high traffic load.

We present SketchVisor, a robust network measurement frame-
work for software packet processing. By robust, we mean that even
under high traffic load, SketchVisor preserves both high (or even
line-rate) performance and high accuracy for network-wide mea-
surement. Instead of proposing a new sketch design, SketchVisor
augments existing sketch-based solutions with a separate data path
(called the fast path) that provides fast but slightly less accurate
measurement for the packets that cannot be promptly handled
by the underlying sketch-based solutions under high traffic load.
Later, it accurately recovers network-wide measurement results
from both sketch-based and fast path measurements.

Specifically, SketchVisor deploys a distributed data plane across
software switches in the network, each of which processes packets
based on the sketch-based measurement tasks as assigned by net-
work operators, and redirects excessive packets to the fast path if
the tasks are overloaded and cannot process those packets at high
speed. We propose a new top-k algorithm for the fast path to track
large flows. By leveraging traffic skewness estimations and care-
fully designed data structures, our top-k algorithm can achieve low
amortized processing overhead and tight estimation bounds. We
also maintain a global counter to track the traffic entering the fast
path so as to capture the aggregate characteristics of small flows
as well. Note that our fast path is general to support a variety of
measurement tasks designed for different types of traffic statistics.

In addition, SketchVisor deploys a centralized control plane to
merge the local measurement results (from both sketch-based and
fast path measurements) from all software switches to provide
accurate network-wide measurement. As the fast path inevitably
loses information for high performance, we formulate a matrix
interpolation problem to enable the control plane to recover missing
information via compressive sensing [6, 7, 9, 61].

We have implemented a SketchVisor prototype and integrated
it with Open vSwitch [41]. We have conducted extensive testbed
experiments on SketchVisor for a wide range of measurement tasks
and microbenchmarks. We show that for all our evaluated sketch-
based measurement tasks, SketchVisor achieves above 17Gbps
throughput with a single CPU core and near-optimal accuracy
with only few KBs of memory in the fast path.

2 BACKGROUND AND MOTIVATION
We introduce the network measurement tasks considered in this
paper, and demonstrate the overhead of existing sketch-based solu-
tions in software.

2.1 Network Measurement
We target general measurement tasks that monitor traffic and col-
lect traffic statistics, conducted by network operators, over one or
multiple time periods called epochs. Traffic statistics can be either
flow-based (identified by 5-tuples) or host-based (identified by IP
addresses); or either volume-based (measured by byte counts) or
connectivity-based (measured by distinct flow/host counts). This
paper focuses on the following common traffic statistics that have
been extensively studied in the literature.

Packet
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Figure 1: Example of Count-Min sketch.

• Heavy hitter: a flow whose byte count exceeds a threshold in
an epoch.

• Heavy changer: a flow whose change of byte counts across
two consecutive epochs exceeds a threshold.

• DDoS: a destination host that receives data from more than a
threshold number of source hosts in an epoch.

• Superspreader: a source host that sends data to more than a
threshold number of destination hosts in an epoch (i.e., a super-
spreader is the opposite of a DDoS).

• Cardinality: the number of distinct flows in an epoch.
• Flow size distribution: the fractions of flows for different

ranges of byte counts in an epoch.
• Entropy: the entropy of flow size distribution in an epoch.

2.2 Performance Analysis
This paper focuses on sketch-based measurement, which summa-
rizes traffic statistics of all observed packets with theoretical guar-
antees on memory usage and error bounds. At a high level, a sketch
is a compact data structure comprising a set of buckets, each of
which is associated with one or multiple counters. It maps each
packet to a subset of buckets with independent hash functions,
and updates the counters of those buckets. Network operators can
query the counter values to recover traffic statistics.

The actual sketch design varies across measurement tasks. To
show the main idea of sketches, we use a Count-Min sketch [14]
as an example to illustrate how it collects flow-based traffic statis-
tics. As shown in Figure 1, a Count-Min sketch consists of a two-
dimensional array with w columns and d rows. For each packet,
we hash its flow ID (5-tuple) to a bucket in each of the d rows using
d independent hash functions, and then add the packet size to the
counter of each bucket. To recover the size of a given flow, we
use the minimum of the counters of the d hashed buckets as an
estimate. With proper settings ofw and d , the estimation flow size
provably incurs a bounded error with a high probability [14].

This example shows that sketches perform fairly simple opera-
tions, mainly hash computations and counter updates. Intuitively,
they should add limited overhead to software packet processing.
Unfortunately, we find that this intuition does not hold in practice.

Observations: Sketches are only primitives that cannot be directly
used for network measurement; instead, we must supplement them
with additional components and operations to fully support a mea-
surement task. In particular, in order to collect meaningful traffic
statistics, we must add extensions to sketches to make them re-
versible, meaning that sketches not only store traffic statistics, but
also efficiently answer queries on the statistics. For example, a
Count-Min sketch can return a flow size only if we query a specific
flow. Thus, if we want to identify, say, heavy hitters that exceed a
pre-specified threshold, a Count-Min sketch can immediately report
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Figure 2: CPU overhead and throughput of sketch-based so-
lutions.

a heavy hitter after updating a packet by checking if the estimated
flow size exceeds the thresholds based on the counters of the hashed
buckets. However, the prior threshold is often unavailable in ad-
vance in practice, and we need to query for heavy hitters subject
to different thresholds. In this case, we must query all candidate
flows in the entire flow space and check if each of them exceeds a
threshold. The flow space size can be extremely large, say 2104 for
5-tuple flows, thereby leading to substantial query costs.

Some proposals extend sketches with efficient reversibility. Del-
toid [13] encodes flow headers with extra counters in each bucket
and updates these counters on every packet. Reversible Sketch [46]
partitions a flow header and hashes each sub-header into smaller
subspaces. FlowRadar [28] maps flows to counters through XOR
operations, such that new flows can be reconstructed by repeatedly
XOR-ing the counters with known flows. However, such extensions
incur heavy computational overhead.

In addition, most sketch-based solutions are designed for specific
measurement tasks and traffic statistics. To run multiple measure-
ment tasks together, we need to deploy each corresponding solution
separately. Thus, running all of them on every packet becomes
computationally burdensome. The recently proposed UnivMon
[30] allows a single sketch to simultaneously collect different types
of traffic statistics. However, it needs to update various compo-
nents (including CountSketch [8] and top-k flow keys), and remains
computationally expensive (see analysis below).
Microbenchmark: To validate the above claims, we present mi-
crobenchmark results on the software implementations of four
representative sketch-based solutions, namely Deltoid [13], Re-
versible Sketch [46], FlowRadar [28], and UnivMon [30], on heavy
hitter detection. Here, we only measure the overhead of record-
ing packets into each sketch-based solution but not collecting the
recorded traffic statistics, as the latter can usually be done offline.
We employ the same configurations as detailed in §7. Figure 2(a)
shows the number of CPU cycles (measured by Perf [42]) of record-
ing a packet in each solution. FlowRadar is the fastest and spends
2,584 cycles per packet, while Deltoid is the slowest and spends
10,454 cycles per packet. Such high CPU overhead translates to
low throughput under high traffic load. Figure 2(b) shows the
maximum throughput achievable by the four solutions versus the
number of threads. No solution can achieve over 5Gbps with one
thread; and Deltoid barely achieves 5Gbps even with five threads.
Thus, these solutions, while being fast enough under low traffic
load, become computationally intensive and resource demanding
under high traffic load in modern data centers, in which servers
are now commonly equipped with 10Gbps NICs and above.

We further analyze the breakdown of the CPU cycles in each
sketch-based solution, and find that the performance bottlenecks
vary across sketch-based solutions. For example, FlowRadar and
Reversible Sketch incur more than 67% and 95% of CPU cycles,
respectively, on hash computations (including randomizing flow
headers to resolve hash collisions). Deltoid’s main bottleneck is
on updating its extra counters to encode flow headers, and this
accounts for more than 86% of CPU cycles. UnivMon spends 53%
and 47% of CPU cycles on hash computations and heapmaintenance,
respectively. The variations of performance bottlenecks also imply
that optimizing specific functions (e.g., using hardware-based hash
computations) may not work well for all sketch-based solutions.

Recent work [1] advocates that simple hash tables would suffice
for network measurement due to improved cache management in
servers and skewness of real-life traffic patterns. Although hash
tables incur fewer computations than sketches [1], they consume
significant memory usage (§7.6). Some systems [21, 29, 38, 62] at-
tempt to filter traffic by predefined rules, so as to reduce memory
usage. However, it requires manual efforts to configure proper rules
to achieve both high accuracy and memory efficiency simultane-
ously. On the other hand, sketches provide theoretical guarantees
on memory usage and error bounds, yet incur high computational
overhead. Although they have not yet been widely deployed, we be-
lieve that their sound theoretical properties make them a promising
building block for network measurement. Our work is to mitigate
the computational overhead of sketch-based measurement, while
preserving the theoretical guarantees of sketches.

3 SKETCHVISOR OVERVIEW
SketchVisor is a robust network measurement framework for soft-
ware packet processing, with several design goals:
• Performance: It processes packets at high speed and aims to ful-

fill the line-rate requirement of the underlying packet processing
pipeline.

• Resource efficiency: It efficiently utilizes CPU for packet pro-
cessing and memory for data structures.

• Accuracy: It preserves high measurement accuracy of sketches.
• Generality: It supports a wide range of sketch-based measure-

ment tasks.
• Simplicity: It automatically mitigates the processing burdens of

sketch-based measurement tasks under high traffic load, without
requiring manual per-host configurations and result aggrega-
tions by network operators.

SketchVisor’s design follows the line of software-defined mea-
surement [23, 30, 36, 37, 56]. It comprises a distributed data plane
that runs on the software switches of multiple hosts in a network,
and a centralized control plane that aggregates the local results of all
software switches and returns network-wide measurement results.
Figure 3 shows both data-plane and control-plane architectures of
SketchVisor.

3.1 Data Plane
The data plane (Figure 3(a)) deploys a measurement module in the
software switch of each host. Each module processes incoming
continuous packet streams and collects traffic statistics for the host.
To avoid duplicate measurement, we can choose to monitor only
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Figure 3: SketchVisor architecture.

either ingress or egress traffic, or leverage hash-based selection to
monitor disjoint sets of packets at different hosts [47]. We divide the
measurement module into two components, namely a normal path
and a fast path. The normal path deploys one or multiple sketch-
based solutions as chosen by network operators, while the fast path
complements the normal path by deploying a fast but slightly less
accurate measurement algorithm to process packets under high
traffic load. Normally, the software switch forwards all packets to
the normal path through a bounded FIFO buffer, which can hold all
packets to be processed and absorb any transient spike. However,
when the traffic load exceeds the processing capacity of the normal
path, the buffer becomes full. In this case, SketchVisor instructs
the software switch to redirect overflowed packets to the fast path,
which then collects traffic statistics from the overflowed packets.
We do not consider any proactive approach that examines packets
and decides which packets should be dispatched into either the
normal path or the fast path, as it will incur non-trivial overhead.

We emphasize that the fast path cannot substitute the sketch-
based solutions in the normal path. The main reason is that the fast
path is less accurate than the normal path by design. To achieve
highly accurate measurement, the normal path has to process as
many packets as possible, while the less accurate fast path is acti-
vated only when necessary.

SketchVisor’s design leaves the deployment decision of what
sketch-based solutions should be deployed to network operators,
since no sketch-based solution can absolutely outperform others in
all aspects. Based on deployment requirements, network operators
can choose either a general sketch-based solution (e.g., UnivMon)
that supports multiple measurement tasks, or a customized one
with better performance for a specific measurement task.
Challenges: The FIFO buffer provides a lightweight means to
determine when to redirect traffic to the fast path (i.e., by checking
if the buffer is full), without compromising the overall measurement
performance. The trade-off is that we cannot control which specific
flows should have packets sent to the fast path, since tracking
specific flows would add processing overhead. This uncertainty
complicates the design of the fast path. Also, instead of assigning a
fast path per measurement task, we associate a single fast path with
all measurement tasks, so that the fast path remains lightweight
regardless of how sketches in the normal path are designed. To
summarize, the fast path should satisfy the following properties:
(i) fast enough to absorb all redirected traffic, (ii) highly accurate,
although the accuracy may slightly degrade from original sketch-
based measurement, and (iii) general for various traffic statistics.

3.2 Control Plane
The control plane (Figure 3(b)) provides a ‘‘one-big-switch” abstrac-
tion for network operators to specify and configure measurement
tasks at network-wide scale. It collects local measurement results
from multiple hosts and merges them to provide network-wide
measurement results. Its goal is to achieve accurate network-wide
measurement as if all traffic were only processed by the normal path
of each host.
Challenges: It is critical to eliminate the extra errors due to fast
path measurement; in other words, all measurement errors should
only come from sketches themselves. However, such error elimina-
tion heavily hinges on the fast path design, which must be general
to accommodate various measurement tasks (§3.1). Similarly, the
error elimination in the control plane must be applicable for any
measurement task.

3.3 Our Solutions
To address the aforementioned challenges, we propose two algo-
rithmic solutions that build on well-studied techniques: the first
one builds on counter-based algorithms [15, 33] to design a light-
weight, accurate, and general fast path in the data plane (see §4
for details), while the second one builds on compressive sensing
[6, 7, 9, 61] to design an accurate network-wide recovery algorithm
in the control plane (see §5 for details). We point out that bundling
existing techniques directly into SketchVisor does not work as ex-
pected. Instead, we carefully analyze the overhead of the existing
techniques, and then motivate and design our customized solutions
in the context of sketch-based network measurement.

4 FAST PATH
4.1 Key Idea
The fast path is critical for the robustness of sketch-based measure-
ment. Without the fast path, the normal path unavoidably discards
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traffic to keep pace with high traffic load, which compromises mea-
surement accuracy and even makes some measurement tasks fail
to work (§7.3).

We design the fast path to track as much information as pos-
sible in network traffic with low computational overhead. It is
well-known that network traffic in practice exhibits heavy-tailed
patterns and is dominated by a few large flows [54, 59], so we ex-
pect that the traffic redirected to the fast path is also dominated
by large flows (§7.5). Note that this heavy-tailed assumption in-
duces many new sketch designs (e.g., identifying large flows in
skewed network traffic). While the inherent sketch designs do not
depend on any input distribution, they often achieve better perfor-
mance under skewed distributions as shown by theoretical analysis
[19] and empirical studies [12]. This motivates us to specifically
track the largest flows, or top-k flows, in the fast path, where k is
configurable depending on the available memory space.

However, tracking only top-k flows is insufficient, since it will
inevitably miss information of small flows, which are also crit-
ical for connectivity-based statistics (e.g., DDoS, superspreader,
and cardinality). Clearly, tracking all small flows in the fast path
is infeasible, as the CPU and memory overheads become expen-
sive. Fortunately, sketch-based solutions map flows to counters
and leverage the counters to estimate various flow statistics. Our
observation is that the values of sketch counters contributed by
small flows are generally small and also have low variance when
compared to large flows. Thus, we only need to track the overall
characteristics of small flows instead of their individual flow head-
ers and sizes. Specifically, we employ a global variable to track the
total byte count of these flows, and use it to infer the specific sketch
counter values later in the control plane.

Solution overview: To this end, we design a fast and accurate
top-k algorithm for our fast path. Our algorithm builds on Misra-
Gries’s top-k algorithm [33]. However, Misra-Gries’s algorithm has
two limitations that prohibit high performance and accuracy. First,
in order to kick out a small flow and add a (potentially) large flow,
it performs O(k) operations to update k counters in a hash table;
the overhead becomes significant when there are many small flows
to kick out. Second, it has loose bounds on the estimated values
of the top-k flows. To overcome both limitations, we combine
the idea of probabilistic lossy counting (PLC) [15], a probabilistic
algorithm that improves accuracy for tracking skewed data, with
Misra-Gries’s algorithm. Specifically, we kick out multiple small
flows each time, obviating the need of performing O(k) counter
update operations for kicking out each flow (i.e., we amortize the
operations over multiple kick-outs). Also, instead of using one
counter per flow, we carefully associate three counters with each
flow to provide tight per-flow lower and upper bounds.

4.2 Algorithm
Data structure: We maintain a hash table H that maps flow head-
ers (hash keys) to counters (hash values). We configure H to hold
at most k flows. Each flow f is associated with three counters.
• ef : the maximum possible byte count that can be missed before

f is inserted.
• rf : the residual byte count of f .
• df : the decremented byte count after f is inserted.

Algorithm 1 Fast Path Algorithm
Input: packet (f , �)
1: function C������T�����(a1, a2, · · · , ak+1)
2: Find the largest two values a1 and a2 and the smallest value ak+1
3: Compute � = logb ( 12 ), where b =

a1�1
a2�1

4: Return ê = �p1 � �ak+1 for some small �
5: procedure U�����B�����(f , � )
6: V = V + �
7: if f has an entry (ef , rf , df ) in H then
8: Update the entry with (ef , rf + �, df )
9: else if H is not full then
10: Insert f to H and set H [f ] = (E, �, 0)
11: else
12: ê = C������T�����({r� |� 2 H } [ {� })
13: for all key � 2 H with H [�] = (e�, r�, d� ) do
14: Update H [�] with (e�, r� � ê, d� + ê)
15: if r�  0 then
16: Remove � from H
17: if � > ê and H is not full then
18: Insert f to H and set H [f ] = (E, � � ê, ê)
19: E = E + ê

We also keep two global counters for the hash table, which we
later use to recover the aggregate statistics of small flows in the
control plane (§5).
• E : the sum of all decremented byte counts.
• V : the total byte count of packets in the fast path.
Algorithm: Algorithm 1 shows our fast path algorithm. Its idea
is to keep the top-k flows in H , and remove from H any flow that
is below some threshold if H is full. Specifically, upon receiving
a packet of size � for flow f , we first update the total byte count
V (line 6). If f is already in the hash table H , we increase the
residual byte rf (lines 7-8); if H is not full (i.e., it has fewer than k
flows), we insert f with (E,�, 0) to H (lines 9-10); otherwise, we
use C������T����� to compute a decremented value ê (line 12).
For each flow � in H , we decrease r� by ê and increase d� by ê
(line 14). We kick out flows with residual byte counts no larger
than 0 (lines 15-16). We add f to H if its remaining byte count is
larger than ê (lines 17-18). Finally, we update the total decremented
byte count E (line 19).

The function C������T����� selects a threshold ê with respect
tok+1 values, i.e., the values of the top-k flows inH and the value of
the new flow f . It fits the input values to a power-law distribution
and estimates the power-law exponent � (line 3) and threshold ê
(line 4), as in PLC [15]. Lemma 4.1 states that Algorithm 1 provides
tight lower and upper bounds of each top-k flow tracked by H . In
Appendix, we explain how � and ê are derived, and present the
proof of Lemma 4.1.

L���� 4.1. Algorithm 1 has the following properties:
• If flow f has size �f > E, it must be tracked in H .
• If f 2 H , rf + df  �f  rf + df + ef .
• For any flow, its maximum possible error is bounded by O(Vk ).

Discussion: Lemma 4.1 does not assume any statistical distribu-
tion. It implies that the per-flow error, which is bounded by O(Vk ),
decreases with k . On the other hand, tracking more large flows
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Figure 4: Example of fast path.

needs more memory and time to traverse the hash table for kick-out
operations. Thus, the value of k trades between performance and
accuracy. Nevertheless, a small hash table suffices in practice since
the fast path is activated only when necessary (§7.5).

Example: We use an example (Figure 4) to illustrate how Algo-
rithm 1 works and how the counters bound the flow sizes. Suppose
that we have a stream of five packets and the hash table H has
three buckets. For the first three packets (i.e., p0,p1,p2), we insert
three flows (i.e., f0, f1, f2) into H , and V represents their total byte
count so far (Figure 4(b)). For the fourth packet p3, since H is full,
we want to kick out small flows and check if we can insert the
new flow f3. To do this, we invoke C������T����� to compute a
decrement for each flow (which is 2 in this case), and update their
r and d (Figure 4(c)). We kick out f2 because its r becomes 0, and
insert the new flow f3 (Figure 4(d)). Finally, we see a packet p4
from f2 again. We still use C������T����� to kick out a small
flow, which is f3 in this case (Figure 4(e)), and insert f2 (Figure 4(f)).
Note that we set the e of f2 to be 2 because we have decremented 2
bytes in total before f2 is inserted. This e represents the maximum
possible byte count that is not included for f2 when f2 is not in the
table yet. Thus, the upper bound of f2 is e + r + d = 7. The lower
bound is r + d = 5 because we count every byte after the flow is
inserted. We emphasize that in this example, we kick out one flow
each time for brevity, but in general, C������T����� computes a
threshold that can kick out multiple flows at a time, which is our
main improvement over Misra-Gries’s algorithm [33].

Generality: Our fast path design is applicable for general traf-
fic statistics listed in §2.1. The fast path monitors 5-tuple flows
and clearly supports flow-based statistics. It can also extract IP
addresses from 5-tuples for host-based statistics. To track more
fine-grained flows, we only need to extend the flow definition with
more fields (e.g., MAC addresses).

The fast path is volume-based and tracks byte counts, yet we
can also use it to track connectivity-based statistics (e.g., DDoS,
superspreader, and cardinality) by converting connectivity-based
sketches in the normal path into volume-based sketches, similar
to the approach in Counting Bloom Filter [4, 34]. Specifically,
connectivity-based sketches typically maintain bit arrays and set a
bit to one if any observed flow/host is hashed to the bit. We now
replace bits by counters and update the counters by byte counts.

5 NETWORK-WIDE RECOVERY
5.1 Key Idea
The control plane provides network-wide measurement by peri-
odically collecting local measurement results from all hosts and
operating on the global views of the normal path and the fast path.
Specifically, it aggregates all sketches via matrix additions into a
single sketch N (i.e., the sketch counters at the same position are
added together), merges all top-k flows and their respective esti-
mated byte counts into a single hash tableH1, and adds all recorded
total byte counts into V . Note that the fast path loses information,
as it only holds approximate counters for top-k flows and does
not keep track of specific small flows. Thus, given N , H , and V ,
the goal of the control plane is to accurately recover the missing
information and hence the true sketch T , as if all traffic were only
recorded in T .
Solution overview: We first formulate the recovery of T as a ma-
trix interpolation problem (§5.2). Our formulation also demonstrates
the hardness of the recovery problem. To this end, we leverage
compressive sensing [6, 7, 9, 61] to solve the recovery problem by
incorporating domain knowledge into optimization.

5.2 Problem Formulation
Interpolation refers to reconstructing missing values based on in-
complete and/or indirect observations. In our case, we formulate
a matrix interpolation problem that recovers the true sketch T by
filling the missing values in N based on H and V . We first derive
problem constraints that need to be satisfied by T .
Constraints: We decompose the traffic (in bytes) in the fast path
into two 2104⇥ 1 vectors indexed by 5-tuple flow header space,
namely x and y, where x denotes the vector of the actual byte
counts of the tracked flows (i.e., flows in H ) and y denotes the
vector of the actual byte counts of other flows. If a flow does not
exist, its vector element has value zero. Thus, the vector x + y
describes the per-flow traffic counts in the fast path.

To recover T , conceivably, we could inject all traffic of the fast
path back to the normal path. This in essence applies the sketch
function to x + y, denoted by sk(x + y), and adds sk(x + y) to N to
obtain T :

T = N + sk(x + y). (1)
However, both x and y are unknown in practice, as the fast path

does not track the actual byte counts of individual flows. Neverthe-
less, we can specify their constraints. First, the fast path tracks the
total byte count V . We can relate x and y to V via their l1-norms
(resp. kxk1 and kyk1) as:

kxk1 + kyk1 = V . (2)

1To simplify notation, we overload H to denote the global hash table in this section.
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Also, while the merged hash table H does not track x, it gives
the lower and upper bounds for each flow due to Lemma 4.1:

rf + df  xf  rf + df + ef . (3)

Hardness: Our problem is to find T that satisfies the constraints
Equations (1)-(3), in which Equations (1) and (2) characterize the
aggregate properties of the traffic in the fast path, while Equa-
tion (3) quantifies the errors of individual flows. Unfortunately,
the fast path only provides incomplete information, and the above
constraints are insufficient to unambiguously determineT ; instead,
there exist multiple feasible solutions. This so-called undercon-
strained problem is commonly found in many matrix interpolation
problems [24, 60]. Thus, instead of finding a closed form of T , we
find the ‘‘best’’ estimate of T .

5.3 Compressive Sensing
We leverage compressive sensing [6, 7, 9, 61] to solve our under-
constrained matrix interpolation problem. Compressive sensing
provides a framework to integrate domain knowledge about matrix
structures, so as to eliminate feasible but irrelevant solutions and
form a solvable optimization problem [9, 61]. In our case, we incor-
porate our knowledge about the properties of network traffic and
sketches to form an appropriate optimization objective function.

Properties: We first identify the properties for T , x, and y.
• T is approximated as a low-rank matrix: As network traffic

is dominated by large flows [54, 59], few counters in T have
much different values from other counters that are only accessed
by small flows. Thus, we can approximateT as a low-rank matrix
(see justifications later).

• Both x and sk(x) are sparse: Since x only includes the top
flows in H and the entire flow space has a very large size (e.g.,
2104 for 5-tuple flows), we can treat x as a sparse vector. Also,
each flow in x touches a limited number of counters in a sketch,
so sk(x) is also sparse.

• Both y and sk(y) are of small noise: Network traffic is often
dominated by few large flows that are recorded in x. The remain-
ing flows in y are all very small and their sizes have low variance.
Thus, we can treat y as a small-noise vector. In addition, a sketch
maps such small-noise flows uniformly to its counters, so sk(y)
is also of small noise.
Before describing how we incorporate the above properties into

an optimization objective, we conduct rank analysis to validate the
low-rank approximation of T . We apply singular value decomposi-
tion to generate low rank approximations [18] for several sketch
matrices, using the same configurations in §7. Figure 5 shows the
relative errors (measured by Frobenius norm) of the low rank ap-
proximations. Reversible Sketch [46], Deltoid [13], and TwoLevel
[56] take only around 50%, 32%, and 15% of singular values to
achieve low rank approximations with less than 10% of errors, re-
spectively (i.e., they can capture more than 90% of information). On
the other hand, the relative error of Count-Min Sketch [14] drops
linearly with the ratio of top singular values. The reason is that it
typically has few rows (less than 10) with thousands of counters
each. Such a simple matrix has a rank equal to its number of rows
and shows no low rank approximation. Nevertheless, we can still
leverage the optimizations of x and y to accurately recover T .
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Figure 5: Error of low rank approximation for sketch-based
solutions.

Objective function: We now encode the above properties into
the objective function, and leverage the compressive sensing frame-
work LENS [9] to recover T . LENS works by decomposing a traffic
matrix into low-rank, sparse, and small-noise components and
forming an objective function that characterizes the components.
Note that LENS mainly addresses traffic matrices that specify traffic
volume between all source and destination pairs, while we focus on
sketches that map flows to counters and have completely different
structures from traffic matrices. Nevertheless, our components T ,
x, and y actually share similar properties to LENS as argued above.
Thus, we follow LENS and derive the following objective function:

minimize: � kT k⇤ + � kxk1 +
1
2�

kyk2F , (4)
where � , � , and � are weighting parameters that are configurable
(see details below). The three terms in the objective function have
the following meanings:
• kT k⇤ =

Õ
i �i , where �i ’s are singular values of T . It is the

nuclear norm [44] of T and penalizes against the high rank of T .
• kxk1 =

Õ
i |xi |. It is the l1-norm of x and penalizes against the

lack of sparsity in x.
• kyk2F =

Õ
i �

2
i . It is the squared Frobenius norm of y and penal-

izes against large elements in y.
Our objective function provides a general framework for the

recovery of all sketches, even though some terms may not be nec-
essary. For example, the term y has limited impact on sketches for
heavy hitter detection, since heavy hitter detection mainly focuses
on large flows in x and a sub-optimal y is also acceptable. Also, for
sketches that do not have low-rank approximations (e.g., Count-
Min Sketch in Figure 5), the nuclear norm of T is nearly a constant,
so we can discard the term kT k⇤ in the optimization objective.
Problem solving and parameter settings: The optimization
problem minimizes the objective function Equation (4) subject to
the constraints Equations (1)-(3). This is a convex optimization
problem, which is computationally tractable. We use the Alterna-
tive Direction Method to efficiently solve this problem [9]. Our
optimization formulation has three parameters, i.e., � , � , and � .
Following the guidelines of LENS [9], we set parameters as follows.

� = (pmT +
p
nT )

p
�(N ).

� =
p
2 log(mx · nx ) =

p
2 ⇥ 104.

� = 10 · �� .
First, we consider � . The constantsmT and nT are the numbers of
rows and columns of matrixT , while �(N ) is the probability density
of matrix N and is set as

Õ
i, j N [i][j]
mT ·nT . Next, we consider � . The
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constantsmx and nx are numbers of rows and columns of vector
x, respectively. Since x is a 2104⇥ 1 vector, we have � =

p
2 ⇥ 104.

Finally, we consider �� . It denotes the measurement noise and is
estimated as the standard deviation of vector y.

6 IMPLEMENTATION
We have built a prototype of SketchVisor in C that supports various
measurement tasks and sketch-based solutions, as summarized in
Table 1. All sketches build on the hash function as in Snort [50].

Data plane: We have implemented SketchVisor’s data plane and
integrated it with Open vSwitch [41]. It has three components: (i) a
kernel module, which collects and dispatches packets to the normal
path and the fast path, (ii) a user-space daemon, which hosts the
normal path, and (iii) a shared memory block, which hosts both the
normal path’s FIFO buffer and the fast path, and is accessible by
both the kernel module and the user-space daemon.

The kernel module is an extension to the original datapath kernel
module of Open vSwitch. When a packet arrives, the kernel module
updates the shared memory block, by inserting the packet header
to the FIFO buffer or directly updating the fast path if the buffer is
full. It also exports a set of interfaces (e.g., open, close, and mmap)
to make it accessible by the user-space daemon. Our modification
of the datapath module is around 1,400 LOC.

The user-space daemon maintains all required sketches for the
normal path, andmaps the shared memory block to its ownmemory
space via mmap. It continuously reads packet headers from the FIFO
buffer and updates sketches. Also, it periodically reports the results
of both the normal path and fast path to the control plane every
epoch, and resets all counters and variables for the next epoch.

The shared memory block provides a lightweight channel for the
kernel module and the user-space daemon to exchange information.
It eliminates context switching during measurement, as opposed to
the upcall mechanism in Open vSwitch (which is based on Linux
NetLink). One challenge is to efficiently synchronize the access
to the shared memory block between the kernel module and the
user-space daemon. For the FIFO buffer, since it has only a single
producer (i.e., the kernel module) and a single consumer (i.e., the
user-space daemon), we implement it as a lock-free circular buffer
that is optimized for cache-line efficiency [27]. For the fast path,
the user-space daemon makes a snapshot of the fast path and resets
the fast path immediately when reporting results. When it reports
the snapshot, the kernel module continues to update the fast path
without being blocked.

Note that Open vSwitch’s kernel-based packet forwarding mod-
ule works independently with SketchVisor’s measurement com-
ponents. Thus, SketchVisor can be deployed atop other software
packet processing frameworks with high packet forwarding per-
formance (e.g., Open vSwitch integrated with the Data Plane De-
velopment Kit (DPDK) [17]). In such environments, we expect that
SketchVisor provides even more performance and accuracy bene-
fits, as the sketch-based measurement overhead now becomes more
significant; we plan to study this issue in future work.

Control plane: The control plane implements network-wide re-
covery. It receives results from the data plane in each host through
ZeroMQ [58]. The compressive sensing solver is based on [9, 61],
and uses the svdcomp [53] library for singular value decomposition.

Measurement task Sketch-based solutions

Heavy hitter (HH) detection

FlowRadar [28]
RevSketch [46]
UnivMon [30]
Deltoid [13]

Heavy changer (HC) detection

FlowRadar [28]
RevSketch [46]
UnivMon [30]
Deltoid [13]

DDoS detection TwoLevel [56]
Superspreader (SS) detection TwoLevel [56]

Cardinality estimation
FM [20]
kMin [2]
Linear Counting (LC) [55]

Flow size distribution FlowRadar [28]
MRAC [26]

Entropy estimation FlowRadar [28]
UnivMon [30]

Table 1: Measurement tasks and sketch-based solutions.

7 EVALUATION
We conduct experiments to demonstrate that SketchVisor can: (i)
achieve both high performance and high accuracy for various mea-
surement tasks, (ii) work seamlessly with various sketch-based
solutions, (iii) scale to a large number of hosts in stress tests, and
(i�) achieve comparable performance with much less memory to
[38], a recently proposed measurement framework based on simple
hash tables.

7.1 Methodology
Testbed: We deploy SketchVisor on a testbed composed of nine
hosts, each of which is equipped with Intel Xeon X5670 2.93GHz
CPU, 300GB memory, a Broadcom BCM5709 NetXtreme Gigabit
Ethernet NIC, and a Mellanox MT27710 10-Gigabit Ethernet NIC.
We run the data plane in eight hosts, which send traffic through
the 10Gb NICs, and the control plane in the remaining host, which
communicates with the data plane through the 1Gb NICs. In each
host, we run SketchVisor (either data plane or control plane) as a
single-threaded process on a dedicated CPU core.
In-memory tester: Our testbed is inadequate for scalability eval-
uation, as its scale is limited by the per-host NIC speed (10Gbps)
and the number of physical hosts in the data plane (eight hosts).
Thus, we also evaluate a SketchVisor variant called the in-memory
tester, which executes the core data plane and control plane log-
ics entirely in memory. For the data plane, the in-memory tester
processes traffic that is loaded into memory in advance, without
forwarding traffic to Open vSwitch and NIC; for the control plane,
the in-memory tester performs network-wide recovery from the
local measurement results that are again loaded into memory in
advance. We run the in-memory tester as a single-threaded pro-
cess on a dedicated CPU core. Our in-memory tester eliminates
network transfer overhead, so as to stress-test the computational
performance of SketchVisor.
Parameter settings: By default, we allocate 8KB memory for the
fast path (we study different fast path sizes in §7.5), and set the
parameters of our network-wide recovery algorithm as described
in §5. For the measurement tasks and sketch-based solutions in
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Table 1, we set their parameters such that the sketch-based solu-
tions for each measurement task have the same error bound based
on their theoretical analysis. For some sketch-based solutions (e.g.,
FlowRadar [30]) that address the worse-case scenario and require
excessive resources, we manually reduce their memory usage with-
out increasing their errors based on our experiments.
• Heavy hitter (HH) detection: We set the HH threshold as 0.05% of

the NIC capacity multiplied by the epoch length. We evaluate
four sketches. (i) Deltoid: we use four rows with 2/0.05% =
4,000 counters each, and the error probability is 1/24 = 1/16.
(ii) Reversible Sketch (RevSketch): similar to Deltoid, we use
four rows with 4,000 counters each, and partition a 104-bit five
tuple into 16-bit words. (iii) UnivMon: we allocate 4,000, 2,000,
1,000, 500 counters in the first, second, third sketches, and others,
respectively, and track top 500 flows in its heap. (i�) FlowRadar:
we use four hash functions in both the Bloom Filter and counter
array, and set the Bloom Filter length as 100,000 and the counter
array length as 40,000.

• Heavy changer (HC) detection: We set the threshold as 0.05% of
total changes over two adjacent epochs, and use the same sketch
settings as in HH detection.

• DDoS detection: We set the threshold as 0.5% of the total number
of IP addresses. We evaluate TwoLevel [56], which consists of a
Count-Min sketch and a RevSketch. For the Count-Min sketch,
we allocate two rows with 4,000 counters each, and for each
bucket in the Count-Min sketch, we allocate two rows with 250
counters each. For the RevSketch, we allocate two rows with
4,096 counters each to track candidate IP addresses, and partition
a 32-bit IP address into four 8-bit words.

• Superspreader (SS) detection: We use the same setting as DDoS
detection.

• Cardinality estimation: We evaluate FM, kMin, and Linear Count-
ing (LC). We allocate four rows with 65,536 counters each for
FM and kMin, and four rows with 10,000 counters each for LC.

• Flow size distribution: We evaluate MRAC and FlowRadar. For
MRAC,we allocate a single rowwith 4,000 counters; for FlowRadar,
we use the same setting as in HH detection.

• Entropy estimation: We evaluate FlowRadar and UnivMon with
the same setting as in HH detection.

Workloads: We use five one-hour public traffic traces collected
in 2015 from CAIDA [5]. In our testbed experiments, we evenly
partition the traces and distribute them across hosts. We modify
the MAC addresses of packets, and replay and forward the packets
across hosts. Before each experiment, we load the traces into mem-
ory to eliminate any disk IO overhead. Each host sends out traffic as
fast as possible to test the maximum throughput of SketchVisor. In
practice, the network utilization is often lower, so a higher portion
of network traffic can be handled by the normal path and we expect
to see better performance and accuracy.

We evaluate each sketch-based solution separately to show its
performance gain with SketchVisor; we do not explicitly evaluate
the combination of multiple sketch-based solutions, yet some of
them (e.g., TwoLevel) comprise multiple sketches by design. The
data plane reports measurement results to the controller in one-
second epochs. In each epoch, we find that each host generates

around 30K-70K flows, 370K-480K packets, and 260MB-330MB traf-
fic. We repeat each experiment 10 times and report the average of
all trials across all epochs. We find that the standard error of each
trial is insignificant and only deviates from the average by at most
5%, so we omit error bars in our plots.
Metrics: We consider the following metrics:
• Throughput: the total traffic volume processed per second (it

can be transformed into the packet rate, as the average packet
size in our dataset is 769 bytes).

• Recall: the ratio of true instances reported.
• Precision: the ratio of reported true instances.
• Relative error: 1

n
Õn�1
i=0

|�i��̂i |
�i where �i is the true value of i

and �̂i is the estimate of i .
• Mean Relative Difference (MRD): 1

z
Õz
i=1

|ni�n̂i |
(ni+n̂i )/2 , where z is

the maximum flow size, and ni and n̂i are the true and estimated
numbers of flows with size i , respectively.
Throughput is used for all tasks, while the remaining metrics

are accuracy-related and are used based on the nature of the traffic
statistics:
• HH, HC, DDoS, SS: recall, precision, relative error.
• Cardinality, entropy: relative error.
• Flow size distribution: MRD.

7.2 Throughput
We evaluate the throughput of SketchVisor by deploying different
sketch-based solutions in the normal path. We compare three
alternatives: (i) NoFastPath, which only executes the normal path
without the fast path, (ii) MGFastPath, which uses the original
Misra-Gries’s top-k algorithm in the fast path, (iii) SketchVisor,
which uses our proposed top-k algorithm in the fast path.

Figure 6(a) shows the testbed results. SketchVisor achieves al-
most 10Gbps for all sketches. NoFastPath only achieves almost
10Gbps for MRAC and from 1.32Gbps to 6.41Gbps for others. MG-
FastPath is faster than NoFastPath, but still achieves no more than
5Gbps for four out of nine sketches. Figure 6(b) shows the in-
memory tester results. NoFastPath and MGFastPath still cannot
achieve 10Gbps for most sketches. In contrast, SketchVisor achieves
over 17Gbps for all sketches, and almost 40Gbps for MRAC in par-
ticular. Note that this result is measured in a single CPU core and is
much higher than five-core results (without the fast path) in §2. We
can further boost the throughput by parallelizing the normal path
and fast path with multiple CPU cores and merging their results
later in the control plane. Our results show that two CPU cores are
sufficient to achieve above 40Gbps for all sketches (not shown in
the figure).

7.3 Accuracy
We evaluate the accuracy of SketchVisor. We compare five alterna-
tives: (i) NoRecovery (NR), which only uses the normal path results
and discards the fast path results, (ii) LowerRecovery (LR), which
only combines the lower-bound estimates in the fast path with the
normal path results, (iii) UpperRecovery (UR), which only combines
the upper-bound estimates in the fast path with the normal path
results, (i�) SketchVisor, and (�) Ideal, which uses the normal path
to process all traffic, without adding extra errors due to the fast path
(i.e., all errors come from sketches themselves). To compute the
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Figure 6: Throughput of different sketch-based solutions.
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Figure 7: Accuracy of HH/HC detection.
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Figure 8: Accuracy of DDoS and SS detection.
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Figure 11: Entropy estimation.

accuracy metrics, we generate the ground truth (with zero error) by
tracking the whole trace with a very large hash table, and compare
the results of each alternative with the ground truth.
HHandHCdetection (Figure 7): NR hasmuch lower recall and a
higher relative error than Ideal. For example, in UnivMon, the recall
of NR is only 8.15% in HH detection and 16.43% in HC detection,
while the corresponding relative errors are 98.63% and 102.58%,
respectively. The reason is that NR discards all information in the
fast path. LR improves the overall recall, but is still below 80% as it
underestimates the sizes and changes for many true HHs and HCs.
UR achieves high recall, but at a cost of low precision. In contrast,
SketchVisor achieves close accuracy to Ideal for all three metrics.
DDoS and SS detection (Figure 8): NR, LR, and UR all have low
recall and high relative errors. In particular, NR even cannot detect
any DDoS or superspreader. LR and UR have the same detection
results since DDoS and SS detection concerns the number of hosts

instead of flow size. In contrast, SketchVisor achieves nearly perfect
results in SS detection. For DDoS detection, the accuracy drops
slightly compared to Ideal, but the recall is still above 90% and the
precision is above 84%.
Cardinality estimation (Figure 9): In FM and kMin, the errors
of NR, LR and UR are all nearly twice those in Ideal, while their
errors are around 17% in LC. SketchVisor significantly reduces the
errors and is close to Ideal. The reason is that all the three sketches
estimate cardinality based on non-zero counters. Since the small
hash table in the fast path discards many flows, NR, LR, and UR
end up with many zero counters in the sketch, and thus have poor
accuracy. In contrast, SketchVisor restores non-zero counters with
compressive sensing.
Flow size distribution (Figure 10): For MRAC, all approaches
achieve near-optimalMRD (around 0.2%), sinceMRAC is fast enough
that only few flows enter the fast path. For FlowRadar, NR, LR, and
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Figure 12: Network-wide recovery.
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Figure 13: Percentage of traffic in the fast path.

UR increase the MRD from 0.0126% in Ideal to 0.1166%, 0.0844%, and
0.0954%, respectively, mainly because they do not consider the miss-
ing small flows dropped by the fast path. In contrast, SketchVisor
reduces the error to 0.0553%.
Entropy estimation (Figure 11): Interestingly, SketchVisor has a
slightly lower error than Ideal, as it can eliminate a small amount of
errors caused by the sketch itself when recovering it using compres-
sive sensing, while Ideal directly returns the sketch that processes
all traffic in the normal path.

7.4 Network-Wide Recovery
We evaluate the network-wide recovery of SketchVisor. To evalu-
ate a large network size, we use our in-memory tester and configure
the control plane to aggregate results from 1 to 128 hosts. Here,
we show the results of HH detection, HC detection, cardinality
estimation, and entropy estimation in Figure 12. The accuracy re-
sults vary across measurement tasks and sketch-based solutions.
Overall, SketchVisor improves accuracy as the number of hosts
increases. For example, the recall of UnivMon increases from 65%
to 81% when the number of hosts increases from one to two. The
recall is even above 99% when the number of hosts exceeds four.
The reason for accuracy improvement is that integrating results
from multiple hosts (i) reduces the number of missing values in
sketch matrices and (ii) increases the number of constraints in our
recovery optimization. Also, some sketches (e.g., kMin in cardinal-
ity estimation) already achieve high accuracy in a single host, and
maintain high accuracy as the number of hosts increases.

7.5 Microbenchmarks
Percentage of traffic in the fast path: Figure 13(a) shows that
SketchVisor redirects more than 20% (resp. 50%) of flows to the
fast path in the testbed (resp. in-memory tester), except for MRAC.

Figure 13(b) shows that the fast path processes more than 50% of
byte counts for most tasks in both testbed and in-memory exper-
iments. The percentage for MRAC is negligible since MRAC is a
simple sketch. Note that our default 8KB fast path only records
around 0.7% of total flows (Figure 13(a)), while contributing to over
20% of byte counts (Figure 13(b)) due to traffic skewness.

We further examine the traffic redirected to the fast path specif-
ically, and find that the top 10% of flows tracked by the fast path
account for over 90% of byte counts for all solutions except MRAC,
and over 80% of byte counts for MRAC; we do not plot the results
in the interest of space.
Impact of fast path size: We configure various sizes for the fast
path: 4KB, 8KB, 16KB, and 32KB. We measure the throughput and
accuracy: HH and cardinality, using the same accuracy metrics in
§7.3. Figure 14(a) shows that the throughput varies by less than 5%
across fast path sizes. The reason is that while a larger hash table
in the fast path implies a longer time to search for small flows to
be kicked out, it also sustains more hash table insertions/updates
before triggering a new kick-out operation. Figures 14(b)-(d) show
the accuracy versus the fast path size. The accuracy improves
remarkably when the fast path size increases from 4KB to 8KB
(e.g., the HH recall of Deltoid increases from 65.17% to 97.21%), and
stabilizes when the fast path size exceeds 8KB.
Computation time of network-wide recovery: The computa-
tion time to solve compressive sensing varies from 0.15 seconds
(for MRAC) to 64 seconds (for Deltoid) in a single CPU core, de-
pending on the number of sketch counters (we omit the figures in
the interest of space). We can reduce the computation time in two
ways. First, some terms in the objective function do not need to be
optimal for some sketches (see discussion in §5.3), so it is possible
to terminate the computation early even though these unnecessary
terms do not converge. We have evaluated this optimization and
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Figure 15: CPU overhead of sketch-based solutions.

find that the computation time for Deltoid can decrease from 64 sec-
onds to 11 seconds. Second, our current solver is single-threaded.
Since the recovery across epochs is independent, we can parallelize
network recovery through multiple CPU cores.
Comparison with Misra-Gries’s algorithm: We compare the
fast path of SketchVisor with the original Misra-Gries’s algorithm
(MGFastPath). We consider two metrics: (i) the number of kick-out
operations, which accounts for the major overhead in the fast path,
and (ii) the relative errors of top flows (including both lower and
upper bounds). Figure 16(a) shows that MGFastPath performs an
order of magnitude more kick-out operations than SketchVisor.
This explains why MGFastPath only slightly improves the through-
put compared to NoFastPath (Figure 6). Figure 16(b) shows the
relative errors on both lower bounds and upper bounds of top-k
flows in the fast path for Deltoid. MGFastPath increases the errors
as k grows. For the 100-th flow, the relative error increases to 35%.
In contrast, SketchVisor keeps the errors under 2% as we tighten
the lower and upper bounds using three counters per flow.
CPU overhead for normal path and fast path: We revisit the
CPU overhead of different sketch-based solutionswhen the fast path
is used. Figure 15 shows the number of CPU cycles for recording a
packet in each sketch-based solution, as well as those for the update
and kick-out operations of the fast path. The number of CPU cycles
varies across sketch-based solutions, from 404 (for MRAC) to 10,454
(for Deltoid). In contrast, the fast path spends only 47 cycles to
record a new flow or update an existing flow in its hash table. While
a kick-out incurs excessive CPU overhead, the fast path limits the
number of kick-outs (Figure 16(a)).

7.6 Comparison with Trumpet
Finally, we show that SketchVisor can approach the performance
and accuracy of simple hash tables [1] (§2.2), while using much less
memory. We consider the recently proposed Trumpet [38], a soft-
ware measurement architecture that tracks per-flow information in
simple hash tables rather than sketches. Specifically, we implement
Trumpet Packet Monitor to monitor traffic in the data plane, and de-
ploy a single trigger to monitor heavy hitters. This trigger requires
a single variable for byte counts and does not contain any predi-
cates to filter traffic. Note that Trumpet deals with hash collisions
by over-provisioning hash tables, but requires substantial memory
to completely eliminate collisions. Therefore, our implementation
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Figure 17: Comparison with Trumpet [38].

allocates a hash table with a small over-provisioning factor and
deals with hash collisions by linked lists. We present the results
with over-provisioning factors 3 and 7, referred to as Trumpet3x
and Trumpet7x, respectively.

Figure 17 compares the throughput and memory consumption of
SketchVisor with Trumpet. SketchVisor achieves similar through-
put as Trumpet (Figure 17(a)). However, the sketches except Deltoid
consume much less memory than Trumpet (Figure 17(b)). The rea-
son is that Trumpet tracks per-flow information in a hash table,
while sketches store information in a fixed number of counters.
Although Trumpet provides perfect monitoring, we have shown
that sketches can also achieve near-optimal accuracy for various
tasks. Thus, SketchVisor provides an efficient alternative for net-
work measurement, especially when the hash table size increases
linearly with the number of flows.

8 RELATEDWORK
Our work is related to software-defined measurement. We review
related work in this area.
Sampling: Sampling is widely used in software-defined measure-
ment for low measurement overhead. Sekar et al. [48] combine
flow sampling and sample-and-hold [19] as primitives for various
measurement applications. OpenSample [52] reconstructs flow sta-
tistics based on sampled traffic. Planck [43] mirrors traffic to remote
sites in a best-effort manner. However, sampling inherently misses
information and supports only coarse-grained measurement.
Sketches: Many architectures employ sketches as primitives to
achieve fine-grained measurement for various measurement tasks
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(see Table 1). In the context of software-defined measurement,
OpenSketch [56] defines APIs for general sketch-based measure-
ment tasks running in commodity switches. SCREAM [37] ad-
dresses dynamic resource allocation of sketch-based measurement
across multiple switches. However, sketch-based measurement
incurs high computational overhead as shown in our analysis (§2).
Although we can deploy distributed sketch-based measurement
[11, 22] to boost performance, it still needs excessive computational
resources for parallelization.

TCAM: TCAM can be used to achieve high-performance network
measurement. Jose et al. [23] propose a TCAMmeasurement frame-
work based on OpenFlow [31]. DREAM [36] dynamically allocates
TCAM for high measurement accuracy. PathQuery [39] monitors
path-level traffic with TCAM. In contrast, our work address soft-
ware packet processing without specific hardware support.

Rule matching: Rule matching selectively processes only packets
of interest, thereby reducing measurement overhead. ProgME [57]
and EverFlow [62] filter flows based on pre-defined rules. Net-
Sight [21] leverages SDN to capture packets for specific forwarding
events. MOZART [29] and Trumpet [38] monitor network-wide
events with hash tables to achieve high throughput [1], by match-
ing flows to events and storing only matched flows in hash tables.
However, hash-table-based measurement incurs much higher mem-
ory overhead than sketch-based measurement (§7.6). Note that
rule matching requires careful configuration of matching criteria
to avoid compromising measurement accuracy.

9 CONCLUSION
We design and implement SketchVisor, a robust network-wide
measurement architecture for software packet processing, with a
primary goal of preserving performance and accuracy guarantees
even under high traffic load. SketchVisor employs sketches as basic
measurement primitives, and achieves high data plane performance
with a fast path to offload sketch-based measurement under high
traffic load. It further leverages compressive sensing to achieve
accurate network-wide measurement. Experiments demonstrate
that SketchVisor achieves high performance and high accuracy for
a rich set of sketch-based solutions.
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Appendix A: Derivation of � and e
We derive � and e in C������T����� of Algorithm 1. Without loss
of generality, we denote the input k + 1 values as a1,a2, · · · ,ak+1,
where a1 � a2 � · · ·ak+1. We fit the inputs to a power-law
distribution; that is, for some random variable Y , we have Pr{Y >
�} = ��� , where �  1 and � < 0 are some control parameters.
We are only concerned about the exponent � for computing e , as
shown below.

To estimate � , we only consider the two largest values a1 and
a2, which are the most likely to be the actual largest flows among
all flows being tracked in the hash table H . Their probabilities
can be described as Pr{Y > (a1 � 1)} = �(a1 � 1)� ⇡ 1

n and
Pr{Y > (a2 � 1)} = �(a2 � 1)� ⇡ 2

n , respectively, where n is the
number of total flows. By dividing the first equation by the second
one, we have (a1�1)�

(a2�1)�
⇡ 1

2 . Thus, we estimate � = logb ( 12 ), where
b = a1�1

a2�1 .
To compute e , we ensure that it is larger than the smallest value

ak+1, so that we can always kick out the smallest flow among the
k + 1 inputs (i.e., the top-k flows in the hash table H and the new
flow); on the other hand, it cannot be too large to avoid kicking
out large flows. Thus, we compute e such that the probability of
kicking out any flow that is larger than ak+1 is no larger than some

small parameter � (e.g., we can set � = 0.05). The probability is
calculated as follows:

Pr{Y  e | Y > ak+1} =
Pr{ak+1 < Y  e}
Pr{Y > ak+1}

=
Pr{Y > ak+1} � Pr{Y > e}

Pr{Y > ak+1}
=

�a�k+1 � �e�

�a�k+1
=
a�k+1 � e�

a�k+1
.

Setting the right side to � yields e = �p1 � �ak+1.

Appendix B: Proof of Lemma 4.1
We prove the three properties of Lemma 4.1 (see §4).

(i) If flow f has size �f > E, it must tracked in H .
Our fast path algorithm decrements a flow by at most E after all

flow kick-out operations (lines 14-17 in Algorithm 1). For any flow
f with size �f > E, its residual counter rf is at least �f � E. Since
we only kick out a flow when its residual byte count reaches zero,
the flow must be tracked in H . The result follows.

(ii) If f 2 H , rf + df  �f  rf + df + ef .
The first inequality holds because rf + d + f is the exact byte

count after f is inserted to H . On the other hand, the missing byte
count before f is inserted is at most ef . Thus, the total byte count
�f (including the byte counts before f is inserted and after f is
inserted) is at most rf + df +�f .

(iii) For any flow, its maximum possible error is bounded byO(Vk ).
The error of a flow f is less than ef  E. Thus, we just need

to prove that E is bounded. Our proof assumes that our param-
eter estimation yields the same parameter � , although the actual
estimated � can vary (slightly).

We prove the result by computing the byte count that is decre-
mented in a kick-out operation. Since we select the threshold e
larger than the smallest value ak+1, the actual decremented byte
count must be larger than ak+1. If we use ak+1 as the threshold,
then the total decremented byte count is exactly (k + 1)ak+1 =
(k + 1) e

�p1��
. This implies that the actual decremented byte count

is at least (k + 1)ak+1 = (k + 1) e
�p1��

in a kick-out operation.
On the other hand, the total decremented byte count in all kick-

out operations should not exceed the total byte count V . Thus, we
have

Õ
e (k + 1) e

�p1��
 V . Since E is the sum of e is all kick-out

operations (i.e., E =
Õ
e e), we have E  �p1 � � V

k+1 . The result
follows.
Remark: We prove that the maximum possible error of any flow in
our top-k algorithm is at most �p1 � � V

k+1 . Note that this is slightly
larger than the worst-case error V

k+1 of Misra-Gries’s algorithm.
However, all flows in Misra-Gries’s algorithm share the worst-case
bound V

k+1 . In contrast, our algorithm estimates the per-flow lower
and upper bounds with three counters and the maximum error is
ef , which varies across flows. Our experiments show that our top-k
algorithm can achieve much smaller per-flow error bounds than
Misra-Gries’s algorithm in practice (§7.5). We leave the theoretical
analysis of average-case errors to future work.

http://perf.wiki.kernel.org
http://www.sflow.org/
https://www.snort.org
http://www.cisco.com/c/en/us/tech/lan-switching/switched-port-analyzer-span/index.html
http://www.cisco.com/c/en/us/tech/lan-switching/switched-port-analyzer-span/index.html
http://www.public.iastate.edu/~dicook/JSS/paper/code/svd.c
http://zeromq.org
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