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Abstract
Low-rank adaptation (LoRA) is a popular approach to fine-
tune pre-trained large language models (LLMs) to specific
domains. This paper introduces dLoRA, an inference serv-
ing system for LoRA models. dLoRA achieves high serving
efficiency by dynamically orchestrating requests and LoRA
adapters in terms of two aspects: (i) dynamically merge and
unmerge adapters with the base model; and (ii) dynamically
migrate requests and adapters between different worker repli-
cas. These capabilities are designed based on two insights.
First, despite the allure of batching without merging a LoRA
adapter into the base model, it is not always beneficial to
unmerge, especially when the types of requests are skewed.
Second, the autoregressive nature of LLM requests introduces
load imbalance between worker replicas due to varying input
and output lengths, even if the input requests are distributed
uniformly to the replicas. We design a credit-based batch-
ing algorithm to decide when to merge and unmerge, and
a request-adapter co-migration algorithm to decide when to
migrate. The experimental results show that dLoRA improves
the throughput by up to 57.9× and 26.0×, compared to vLLM
and HugginFace PEFT, respectively. Compared to the con-
current work S-LoRA, dLoRA achieves up to 1.8× lower
average latency.

1 Introduction

Large language models (LLMs) are changing the landscape
of modern applications. LLMs such as GPT4 [1] and Llama-
2 [2] are pre-trained on a large corpus to achieve outstanding
capabilities on generic tasks. These pre-trained LLMs (a.k.a.
base LLMs) can be fine-tuned to a specific domain to optimize
particular application scenarios, e.g., fine-tuning Llama-2 for
better code generation [3]. LLM platforms [4–7] provide fine-
tuning APIs and services for developers to fine-tune LLMs
and build domain-specific applications. For example, OpenAI
provides fine-tuning APIs for fine-tuning GPT-4 and Comple-
tions API to access these fine-tuned LLMs [4].

Low-rank adaptation (LoRA) [8, 9] is a popular approach
to fine-tuning LLMs. It is a type of parameter-efficient fine-
tuning [10] that reduces fine-tuning costs by updating only

a small portion of model parameters. LoRA exploits the low
dimensionality of parameter updates in fine-tuning and repre-
sents them with pairs of two small matrices called LoRA
adapters. Fine-tuning a base LLM amounts to training a
LoRA adapter for a specific domain while keeping the base
LLM unchanged. Compared to the fully fine-tuning GPT-3
175B, LoRA can reduce the number of updated parameters by
10,000× and the GPU consumption by 3× while achieving
comparable model quality [8]. At inference time, the LoRA
adapter can be merged with the base LLM thus introducing
no extra inference overhead.

Serving a set of LoRA model fine-tuned on a base LLM
(i.e., LoRA as a service) introduces new challenges to LLM
inference serving. Existing LLM inference systems such as
Orca [11] and vLLM [12] focus on serving a single model,
while in the scenario of LoRA as a service, there are mul-
tiple models. Conceivably, one can use Orca or vLLM to
serve each LoRA model and adopt an existing model serving
orchestrators like SHEPHERD [13] and AlpaServe [14] to
manage multiple LoRA models. This simple approach does
not consider the characteristics of LoRA model serving and
has the following two fundamental problems.

First, serving each LoRA model separately introduces a
high memory footprint, and suffers from low GPU utilization
as the GPUs cannot be efficiently multiplexed across mod-
els. The problem is particularly acute for LLMs as LLMs
have large sizes. An alternative approach is to directly use
unmerged LoRA adapters, i.e., keeping the base LLM un-
changed and storing the set of LoRA adapters alongside.
When serving different types of requests, it can batch the
shared base LLM computation across requests to increase effi-
ciency. This unmerged approach, however, does not work well
when the requests are skewed on a particular LoRA adapter,
whereas the merged approach can further reduce computa-
tional costs to increase efficiency.

Second, LLM tasks have variable input and output lengths,
which naturally introduces load imbalance between different
worker replicas. Due to the autoregressive pattern of LLMs,
simply dispatching requests to different worker replicas uni-
formly does not work well, as the execution time and GPU
memory consumption of requests are diverse [11, 12]. The
LoRA as a service scenario further exacerbates the problem,
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as LoRA adapter orchestration across worker replicas also
needs to be taken into consideration. The dependency between
LoRA adapters and requests as well as the GPU memory com-
petition between them make the problem even harder than
traditional load balancing problems.

We introduce dLoRA, a new inference serving system for
LoRA models to address these two problems. Compared to
previous practices in LoRA serving, dLoRA further improves
efficiency with two special capabilities. First, dLoRA can dy-
namically merge and unmerge LoRA adapters with the base
model in each worker replica. Second, dLoRA can dynami-
cally migrate LoRA adapters and requests between worker
replicas. Exploiting the capabilities of dLoRA efficiently has
two technical challenges. The first one is how to decide when
to merge and unmerge adapters. The second one is how to
decide which adapters and requests to migrate. We propose
two techniques to address these two problems.

To address the first problem, we propose a dynamic cross-
adapter batching technique. Based on the request arrival pat-
tern and current state, dLoRA dynamically switches between
merged and unmerged inference with different batching strate-
gies to reduce the end-to-end latency. To decide an appropri-
ate switching time, dLoRA dynamically adjusts the switching
threshold with the thresholds tuning according to the request
pattern to reduce switching overhead. dLoRA adopts a credit-
based batch generator to generate potentially efficient batch-
ing plans without harming the fairness of requests. A final
decision is made by taking all factors into account, including
execution time, queuing delay, and switching overhead.

To address the second problem, we propose a request-
adapter co-migration technique. Except for proactively dis-
patching requests based on current requests and adapter dis-
tribution, it also dynamically migrates requests and replicates
adapters to handle unpredictable load imbalance across repli-
cas. We formulate the problem as an integer linear program-
ming (ILP) problem and compute an optimal solution to min-
imize the load imbalance. To address the high overhead of
ILP, we amortize the overhead by reducing the frequency of
ILP solving and relaxing the problem to a selective migration
problem inspired by selective replication [15–17].

In summary, we make the following contributions.
• We identify the inefficiencies of current LLM serving sys-

tems in the LoRA model serving scenario, and articulate
the challenges of serving LoRA models.

• At the worker level, we propose a dynamic cross-adapter
batching technique to dynamically switch between merged
and unmerged modes to reduce the end-to-end latency.

• At the cluster level, we propose a request-adapter co-
migration technique to dynamically migrate requests and
adapters to balance the load across the cluster.

• We design and implement dLoRA with the preceding two
techniques. The evaluation results based on real-world
workload traces show that dLoRA achieves up to 57.9× and
26.0× higher throughput than vLLM [12] and HuggingFace
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Figure 1: LoRA optimization.

PEFT library [10], respectively. By leveraging dynamic or-
chestration mechanisms, dLoRA also achieves up to 1.8×
lower average latency compared to the concurrent work
S-LoRA [18].

2 Background and Motivation

2.1 Parameter-Efficient Large Language Models

Large language models. Large language models (LLMs) try
to maximize the next token predictability given the previous
tokens. At the inference time, LLMs show an autoregressive
pattern. For each request, an LLM iteratively generates tokens
based on the prompt (i.e., input tokens) and previous output to-
kens once a time until it generates an end-of-sentence marker.
This autoregressive nature makes LLM inference exhibit two
characteristics. The first one is variable inference latency de-
pending on the input and output lengths [12, 19]. The second
one is significant GPU memory consumption of intermediate
states of requests. To reduce redundant computation, LLMs
cache the intermediate states of previous tokens, called key-
value (KV) cache, in the GPU memory [20]. Similar to prior
work [12], we use intermediate states to refer to the key-value
cache. As the size of the KV cache is proportional to the
number of input and output tokens, the memory consumption
of LLM inference is also variable. The KV cache consumes
a large amount of GPU memory and may bound the perfor-
mance of LLM inference due to the limited GPU memory
capacity [12, 19].

Low-rank adaptation. Fine-tuning adapts a pre-trained LLM
to a specific domain without training an LLM from scratch.
Low-rank adaptation (LoRA) [8, 9, 21] is a popular class of
parameter-efficient fine-tuning methods [10], as it can achieve
competent performance by only fine-tuning a small number of
trainable parameters, called the adapter. Furthermore, LoRA
does not introduce extra inference latency. Inspired by the
phenomenon of low “intrinsic rank” of weight updates, the
core of LoRA is to represent each weight update as two rank
composition matrices with much smaller ranks. During fine-
tuning, LoRA only needs to optimize these two rank compo-
sition matrices, while keeping the pre-trained weights frozen.
Figure 1 shows an example. For a pre-trained weight W with
the shape of d ×d, LoRA represents weight updates ∆W as
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two smaller matrices A and B with the shape of r × d and
d × r respectively, where r is much smaller than d. During
fine-tuning, as shown in Figure 1(a), LoRA only updates A
and B and keeps W frozen, which significantly reduces com-
putation and memory consumption. At the inference time, as
shown in Figure 1(b), LoRA can merge the multiplied matrix
B×A (i.e., ∆W ) into W to eliminate extra inference overhead.
Given the benefits of LoRA, it is widely adopted to enhance
the capability of LLMs, such as long sequence [22] and multi-
modal input [23]. It can be used in all dense layers of LLMs,
but it is typically used to adapt attention weights [8].

2.2 Inference Serving Systems

LLM serving systems. Many techniques have been devel-
oped to improve the efficiency of LLM inference by leverag-
ing the characteristics of LLMs. Orca [11] proposes iteration-
level scheduling to batch requests of different lengths at the
granularity of iterations. Completed requests can be removed
immediately and newly arrived requests can be inserted into
the batch without waiting for the completion of the current
batch. The state-of-the-art solution vLLM [12] further intro-
duces an on-demand block-based GPU allocation mechanism
called PagedAttention to reduce GPU memory fragmentation
caused by variable and unpredictable KV cache, thereby in-
creasing the maximum batch size. However, they only focus
on the single LLM serving scenario. When serving multiple
LoRA LLMs, they cannot share the common base model and
thus cause severe redundant memory consumption.

HuggingFace PEFT [10] is a popular library for parameter-
efficient fine-tuning. It can also be used to serve multiple
LoRA LLMs shared with the same base LLM. However, it
can only serve requests destined to the same adapter once
at a time by swapping between different adapters, leading
to low efficiency. Besides, it lacks support for cluster-level
management for requests and adapters.

Traditional DNN serving systems. Many DNN serving sys-
tems can orchestrate multiple DNN models in a cluster, such
as SHEPHERD [13] and AlpaServe [14]. However, they also
do not support sharing the base model among different models
and do not target autoregressive LLMs. PetS [24] can serve
multiple parameter-efficient non-autoregressive transformer
models in a single server, but it cannot serve autoregressive
LLMs and does not consider LoRA. Besides, it does not sup-
port cluster-level management for requests and models. In
short, existing DNN serving systems also cannot serve multi-
ple LoRA LLMs in the cluster wide efficiently.

2.3 Challenges

To serve a large number of requests, a serving system usu-
ally deploys multiple replicas of the same base LLM, with
each handling a subset of the requests. Nevertheless, when
employing existing systems (such as vLLM and PEFT) to
serve LoRA LLMs, we identify two primary challenges.
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(b) Challenge across replicas.

Figure 2: Challenges in existing LoRA serving.

GPU underutilization within a replica. In a model replica, a
single base model is accompanied by multiple LoRA adapters
for different types of requests. The aforementioned PEFT only
accommodates batching requests with the same LoRA adapter
(i.e., the same type of requests). When serving one type of
request, PEFT forces other types of requests to wait until the
completion of the current batch. The serving system has to
handle low-frequency types of requests one by one, which
cause severe GPU underutilization. Figure 2(a) illustrates an
example. When three requests arrive simultaneously, even if
the max batch size is three, PEFT has to process these three
requests separately: one batch for a request destined to the
type A adapter and another batch for two requests destined
for the type B adapter. As a result, the serving system only
utilizes 50% of the total GPU resources and doubles the total
latency for the requests destined to the type B adapter. This
example indicates that although LoRA does not introduce ex-
tra inference latency for a single request, it is still challenging
to serve multiple LoRA LLMs efficiently.

Load imbalance across replicas. To manage multiple repli-
cas in a cluster, a serving system usually adopts a global sched-
uler to dispatch each incoming request to a specific replica.
However, there exists load imbalance across replicas from two
aspects. First, due to the limited GPU memory, one adapter
type may only reside in a subset of replicas. When a burst
of requests destined for this adapter type arrives, only a few
replicas are utilized, while other replicas are idle. Figure 2(b)
shows an example that sending requests based on the Azure
trace [25] adopted by a previous DNN serving work [14]
to a cluster with eight replicas, where 32 types of adapters
are uniformly loaded in the eight replicas. In this case, the
burst of requests leads to severe load imbalance across repli-
cas. The difference in queuing delay between replicas can be
up to 8.0×. Second, even if the requests are dispatched uni-
formly across replicas, the variable input and output lengths
of requests still lead to load imbalance inevitably. The statis-
tics of ShareGPT [26], the datasets collected from real-world
conversations with ChatGPT [27], show that the input and
output lengths of requests are highly variable. The longest
input length and output length of requests are longer than the
average lengths by 636.7× and 163.9× respectively, which
implies extremely diverse execution time and GPU memory
consumption among requests. The load imbalance caused by
variable input and output lengths undermines the system’s
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Figure 3: dLoRA architecture.

overall inference efficiency and significantly increases laten-
cies for requests on the overloaded replica.

3 Overview

dLoRA is an inference serving system that serves multiple
LoRA models in a cluster. Within a replica, dLoRA employs
a novel cross-adapter batching technique to process requests
to different LoRA adapters in a single batch and improves
the GPU utilization (§4). Across replicas, dLoRA dynami-
cally migrates LoRA adapters and requests in the cluster to
achieve better load balancing (§5). Figure 3 shows the overall
architecture of dLoRA.

Intra-replica. dLoRA deploys a set of worker replicas in a
cluster. Each replica contains a subset of LoRA adapters and
one base model on several GPUs.

Dynamic batching. Within a replica, dLoRA uses a local
cross-adapter batching technique to process requests from
the global scheduler. The replica maintains a queue to buffer
incoming requests and schedules a batch of requests to the
execution engine with dynamic batching to achieve optimal
tradeoff between merged and unmerged inference.

Memory management. dLoRA efficiently manages the GPU
memory of LoRA adapters and requests within a single
replica. The memory manager allocates the GPU memory
to the LoRA adapters and the intermediate states of requests.
The two different types of memory may race for the lim-
ited GPU memory, which harms the serving performance. To
mitigate this, the memory manager dynamically adjusts the
memory allocation for adapters and requests based on the
current GPU memory usage and workload pattern. Besides,
the memory manager also swaps the unused adapters and
requests to the host memory.

Inter-replica. To manage multiple replicas in the cluster,
dLoRA uses a load balancer to solve the aforementioned load
imbalance problem. Due to the variable input and output
lengths of LLM requests, dLoRA introduces proactive and
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Figure 4: Unmerged inference.

reactive mechanisms to solve the imbalance problem before
and after it occurs, respectively.

Proactive mechanism. The proactive mechanism, upon receiv-
ing user requests, directs them to a specific replica based on
a two-fold dispatching policy. For short-term load dynamics,
the mechanism proactively selects the replica with the most
available resources to load the corresponding adapter and pro-
cess the request. For long-term load dynamics, the mechanism
proactively loads and replicates adapters for future predictable
load spikes.

Reactive mechanism. The proactive mechanism alone is not
sufficient since the resource usage (i.e., input and output
length) of a request is variable. The load imbalance prob-
lem still occurs. To address this issue, dLoRA introduces a
reactive mechanism to handle such a situation. Specifically,
there is a global monitor that periodically collects the resource
usage of each replica. Once the monitor detects a replica with
a heavy load, it notifies the re-balance trigger. The reactive
mechanism then employs a request-adapter co-migration al-
gorithm to find the optimal migration plan and sends the plan
to the cluster’s migration controller. The controller then mi-
grates requests’ intermediate states and loads LoRA adapters
across different replicas to achieve load balancing.

4 Dynamic Batching

4.1 Unmerged Inference

In §2.3, we discuss the limitations of merged inference in
terms of significant queuing delay and poor GPU utilization
when serving multiple LoRA LLMs. However, the character-
istics of LoRA LLMs provides an opportunity.

Unmerged inference. Figure 1(b) shows that the fine-tuned
weights and the pre-trained weights are merged to serve a
request (i.e., y = (W +BA)x), as initially suggested in the
LoRA paper [8]. This approach is termed merged inference.
An alternative approach is unmerged inference to process
requests with different types in a single batch. Specifically,
unmerged inference separates the computation of the pre-
trained LLM weights and each LoRA adapter weights. During
inference, different types of requests can be batched together
to share the same computation with the pre-trained LLM
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Figure 5: Non-negligible adapter computation overhead.

weights and process different computation with LoRA adapter
weights at parallel.

Figure 4 demonstrates unmerged inference. Consider two
different requests, x0 and x1, with their respective LoRA
adapters, adapter0 and adapter1. During inference, the base
model inference Wx is batched together as W × [x0,x1]. Si-
multaneously, the LoRA adapter inference BAx is computed
separately for each request as B0A0x0 and B1A1x1 in paral-
lel. Finally, the base model inference and the LoRA adapter
inference are aggregated to obtain the final results y0 =
Wx0 +B0A0x0 and y1 =Wx1 +B1A1x1. Unmerged inference
improves the GPU computation efficiency by improving the
batch size. However, this solution poses a new challenge.

Extra Computation Overhead. Although unmerged infer-
ence accelerates the requests processing with different types,
the benefit of unmerged inference technique is not a free lunch.
Unmerged inference requires computing three matrix multi-
plications for each request, i.e., Wx, Ax and BAx, and a matrix
addition for result aggregation. As a result, unmerged infer-
ence introduces extra computation overhead of two additional
matrix multiplications (i.e., separate computation for adapter
inference) and one additional matrix addition in each layer.

Figure 5 illustrates the overhead associated with unmerged
inference. We conduct an experiment to compare the exe-
cution time of the base LLM computation, denoted as Wx
(equivalent to original LoRA LLM inference), with the LoRA
adapter computation BAx. The experimental setup follows §7.
The results, depicted in the figure, reveal that the execution
time for the LoRA adapter computation BAx is 38.9% of the
baseline LLM computation Wx. This finding suggests that
unmerged inference might not always yield performance ben-
efits. On the contrary, performance may degrades when only
processing few types of requests.

4.2 Dynamic Batching with Thresholds Tuning

In the preceding discussion, we highlight how unmerged infer-
ence incurs additional computational overhead, while merged
inference leads to significant queuing delays and low GPU
efficiency. A combined approach of these two batching meth-
ods can potentially offer a more balanced tradeoff between
queuing delay and computational overhead. Yet, determining
the optimal batching strategy, within a constrained schedul-
ing time frame, is challenging. First, the decision needs to

Algorithm 1 Dynamic Batching
1: function DYNAMICBATCHING(B f c f s,R,S,L)
2: Input: FCFS requests B f c f s, Request R = {r1,r2, ...,rn}
3: Replica state S, LoRA adapters L = {l1, l2, ..., lm}
4: Output: The batch of requests to be executed Bnext
5: // Adaptive switching between different modes
6: if S.state == unmerge then
7: Rmerge = argmaxli∈L |{ri ∈ R | ri.type == li}|
8: if |Rmerge|/|B f c f s|> αswitch then
9: S.state, S.type = merge, Rmerge.type

10: return Bnext = Rmerge[: max_bs]
11: else
12: return Bnext = B f c f s

13: else
14: Rmerge = {ri ∈ R | ri.type == S.type}|
15: if |Rmerge|/|B f c f s|< βswitch then
16: S.state = unmerge
17: return Bnext = B f c f s
18: else
19: return Bnext = Rmerge[: max_bs]

made at the granularity of the iteration while each iteration of
LLM inference is typically around tens or hundreds of mil-
liseconds [11, 19]. To avoid the performance degradation, the
decision must be made swiftly. Second, the unpredictability
of request arrival patterns and request execution time fur-
ther complicates this decision-making [13, 14, 26]. Last but
not least, switching between the two inference methods in-
troduces non-negligible overhead (i.e., an additional matrix
multiplication BA and a matrix addition/subtraction between
base LLM and adapter). We propose a dynamic batching
technique to choose the inference method at runtime.

Algorithm. Algorithm 1 outlines the pseudo-code. Each iter-
ation begins by assessing the replica’s state (line 6). In the un-
merged state, the algorithm estimates potential performance
gains from merged inference. It selects the LoRA adapter
with the most requests (line 7) and evaluates its performance
against the default first-come-first-serve (FCFS) order (line
8). We use the (FCFS) as the default scheduling choice. Dy-
namic batching is orthogonal to the underlying scheduling
policy; other policies can also be used. If the size ratio exceeds
the switching threshold αswitch, indicating a performance en-
hancement, the algorithm switches to merged inference (line
9) and processes the requests from the corresponding adapter
type (line 10). If not, it continues with the FCFS batch (lines
11–12). In scenarios of merged inference, the algorithm first
batches requests matching the active adapter, i.e., Rmerge (line
14). If the FCFS batch size ratio to Rmerge is smaller than the
threshold βswitch or the active LoRA adapter is not in the set of
legal adapters L (line 15), the unmerged state (i.e., processing
B f c f s) is deemed advantageous (lines 16–17). Otherwise, the
algorithm remains the merged state (lines 19).

Adaptive threshold tuning. The switching threshold αswitch
and βswitch are the key parameters of the algorithm. Figure 6
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illustrates the two thresholds between merged and unmerged
inference. The horizontal axis represents the ratio between
|Rmerge| and |B f c f s|.

Our first insight is that the switching overhead can be amor-
tized across multiple future iterations. For example, assume
that the switching overhead from unmerged to merged infer-
ence is 100 ms, and assume that merged inference of one
iteration is 50 ms and unmerged inference of one iteration is
100 ms. Let the number of iterations in current processing is
three, and the overall execution time is 300 ms if the status is
unmerged inference. However, if we switch to merged infer-
ence at the beginning, the overall execution time is 250 ms
for three iterations, i.e., switching overhead 100ms plus three
iterations of 150 ms. In this case, the switching overhead is
amortized across the three iterations. Our second insight is
that leveraging historical retrospection is possible, despite the
unavailability of future knowledge. Continuing with the ex-
ample, at the beginning of the first iteration, the total number
of iterations remains unknown. If requests are finished in one
iteration, merging inferences offers no advantage. However,
if processing spans two or more iterations, it becomes plau-
sible to anticipate additional future iterations. Under such
circumstance, switching to merged inference is still timely.

Based on the two insights, we propose an adaptive thresh-
old tuning algorithm. The algorithm first introduces the break
point on iteration granularity, which is marked by events such
as replica switching, changes in Rmerge, or after processing
a set number of iterations. Upon reaching a break point, the
algorithm tunes the thresholds based on the data collected
from the preceding period, stretching from the current to the
previous break point. The pseudo-code is outlined in Algo-
rithm 2. In cases where the previous period’s replica state
is unmerge, we focus on tuning αswitch. Let the number of
the iterations in the previous period be NI and the merged re-
quests, Rmerged [: maxbs], in the ith iteration be Bi and B f c f s in
the ith iteration be B′

i. The throughput of the merged inference
Tmerge and the throughput of the unmerged inference Tunmerge
are calculated in lines 4–5. The iteration time can be profiled
accurately [19]. A higher Tmerge leads to a reduction in αswitch
by a decrement factor γdec. Otherwise, it is increased by a
multiplication factor γmul . If the replica state in the previous
period is merge, the algorithm tries to tune βswitch. The tun-
ing is similar to the case of αswitch, and we omit the details
for brevity. This method ensures the adaptability of the two
thresholds to varying request characteristics.

Starvation prevention. Although dynamic batching acceler-
ates LoRA LLM serving, it may cause starvation. Specifically,

Algorithm 2 Adaptive Threshold Tuning
1: Input: Candidate period NI , Merged batches B1,B2, ...,BI ,

Switching overhead tM , Current switching threshold αswitch
2: Output: New switching threshold αswitch
3: function ADAPTIVETUNING(NI , {Bi}, tM , αswitch)

4: Tmerge =
∑

NI
i=1 |Bi|

∑
NI
i=1 IterationTime(Bi)+tM

5: Tunmerge =
∑

NI
i=1 |B′

i|
∑

NI
i=1 IterationTime(B′

i)

6: if Tmerge > Tunmerge then
7: αswitch = αswitch − γdec
8: else
9: αswitch = αswitch × γmul

10: return αswitch

because dynamic batching prefers processing requests with
the most loaded LoRA adapter type, it may starve other types
of requests. To address this problem, we use a credit-based
mechanism to prevent starvation. The basic idea involves al-
locating a credit to each LoRA adapter. This credit is then
transferred to any preempted adapter. When the credits of
certain adapters exceed a threshold, the algorithm prioritizes
processing requests with these adapters. Detailed explanations
are provided in §A.1.

4.3 LoRA Adapter Offloading

Besides GPU computational resources, GPU memory re-
sources are also heavily used by LLM inference workloads.
Sharing a base LLM across LoRA LLMs mitigates the GPU
memory footprint, yet memory scarcity persists, especially
when storing multiple LoRA adapters. For instance, a single
LoRA adapter for Llama-7B requires 56 MB of GPU memory,
which is comparable to the intermediate states (i.e., key-value
cache) of 7 tokens. As the number of LoRA adapters increases,
only a small fraction of GPU memory is available for storing
intermediate states of requests. To this end, we employ a swap-
ping mechanism that swaps LoRA adapters and intermediate
request states between GPU and host memory. The compact
size of LoRA adapter facilitates rapid swapping. Such pro-
cess is further accelerated by overlapping the swapping with
execution using prefetching techniques [19]. Regarding GPU
memory distribution, dLoRA adopts a workload-aware alloca-
tion algorithm for balancing LoRA adapters and intermediate
request states, as detailed in §5.

5 Dynamic Load Balancing

To address the load imbalance problem across replicas for
LoRA serving, we combine proactive and reactive mecha-
nisms. Specifically, we follow the existing approach [13, 14]
to adopt a proactive mechanism that dispatches requests to
replicas. The challenge of LoRA serving as discussed in §2.3
is that the variable input and output lengths of LLM requests
cause load imbalance even if the proactive mechanism bal-
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Figure 7: Workload pattern.

ances the load when dispatching requests. Therefore, we de-
sign a reactive mechanism that migrates requests and adapters
between replicas to reactively address such load imbalance.

5.1 Proactive Mechanism

We first introduce the dispatcher that proactively dispatches
requests to replicas and loads LoRA adapters to GPUs ac-
cording to the workload patterns (i.e., the arrival pattern of
requests). Figure 7 shows a production trace used by prior
works on inference serving [13, 14]. The workload pattern
of this trace can be examined from both long-term and short-
term perspectives. In the long term, the pattern exhibits pre-
dictability and periodicity, e.g., low load at midnight and high
load during daytime. On the other hand, in the short term,
the pattern is marked by unpredictability and burstiness. We
follow existing work [13, 14] to adopt a proactive mechanism
based on these characteristics for LoRA serving.

Guided by the predictable long-term workload, it is possi-
ble to preload LoRA adapters to GPU memory to reduce the
adapter loading time. During the adapter preload process, we
follow the existing work [13] to maximize the minimum burst
tolerance of LoRA adapters. The burst tolerance of an adapter
in our scenario is defined as the ratio of the peak capacity to
the average load of the adapter, where the average load can
be obtained from the historical long-term workload. Different
from the previous DNN serving scenarios, we find that the
peak capacity of a LoRA adapter is dominated by the GPU
memory allocation between LoRA adapters and requests’ in-
termediate states. As more LoRA adapter is preloaded into
the GPU memory, more replicas can serve this type of re-
quest immediately. However, it leaves less GPU memory for
requests’ intermediate states, which limits the peak serving
throughput. Therefore, we define the peak capacity of a LoRA
adapter as the number of requests that can be served by the
unallocated GPU memory where the corresponding LoRA
adapter resides. Based on this metric, the dispatcher of dLoRA
greedily preloads the LoRA adapter with the lowest burst tol-
erance to a replica without this adapter until the minimum
burst tolerance decreases to find an optimal placement plan.

Due to the unpredictable short-term pattern of the work-
load, there also exists a short-term burst of certain LoRA
adapters’ requests. Such short bursts may cause the burst re-
quests to be dispatched to a small set of replicas with the
corresponding LoRA adapters. This leads to severe load im-

balance and long queuing delay od requests. On the contrary,
if the burst requests are dispatched to other replicas without
the corresponding adapter, it incurs additional loading time
and consequently harms the serving performance. To address
this problem, dLoRA use an adapter-aware dispatch policy
with dynamic LoRA loading to consider all these factors.
Specifically, dLoRA calculates an estimated pending time
for each replica, which includes the time to load the LoRA
adapter (if not already loaded) and the estimated queuing time
on this replica. Based on this metric, dLoRA dispatches re-
quests to the replica with the shortest estimated pending time
to balance the load across replicas. This is especially effective
in mitigating issues caused by sudden bursts of requests and
consequent queuing delays in heavily loaded replicas.

5.2 Reactive Migration

Although proactive dispatching can mitigate the load imbal-
ance problem, the system still suffers from load imbalance
caused by variable input and output lengths of LoRA requests
(§2.1). Therefore, even if the workload arrival pattern is stable
and entirely predictable, the load imbalance still occurs when
some requests in some replicas have longer execution times
than others. The GPU memory consumption of requests also
suffers from the same load imbalance problem. Some repli-
cas may hold substantial intermediate states of requests even
larger than the GPU memory capacity, which causes frequent
swapping between GPU memory and host memory. Other
replicas may hold a smaller amount of intermediate states of
requests. Such load imbalance harms the serving performance
and cannot be solved by only proactively dispatching.

Dynamic adapter-request co-migration. To address the
load imbalance problem, we propose a adapter-request co-
migration technique. The main idea is to migrate LoRA
adapters and requests (with intermediate states) from over-
loaded replicas to others. Such migration reactively balances
the load across replicas. As shown in Figure 8, replica 0 is
overloaded with long-context requests while replica i is un-
derloaded with short-context requests. The load imbalance
can be mitigated by migrating some requests from replica
0 to replica i and loading corresponding adapters. However,
it is not trivial to decide the optimal migration plan. Before
introducing the algorithm in detail, we first model the reactive
migration problem. The key notations are listed in Table 1.

Objective: overall running time. The goal of the migration
algorithm is to minimize the overall running time among
all replicas. The overall running time is determined by the
placement of requests and LoRA adapters. We define two
0-1 matrices x and y to represent the placement of requests
and LoRA adapters, respectively. Specifically, xi, j and yk, j are
0-1 variables that indicate whether request i or adapter k is
in the replica j. Furthermore, we break x into two matrices
xG and xH to represent the placement of requests in the GPU
memory and host memory, respectively. The request with its
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Symbol Description

xG
i, j Whether requests i is in the replica j’s GPU memory.

xH
i, j Whether requests i is in the replica j’s host memory.

xi, j Whether requests i is in the replica j.
yk, j Whether adapter k is in the replica j.
MR

i The memory consumption of request i.
MA

k The memory consumption of adapter k.
MG

j GPU memory capacity of replica j.
MH

j Host memory capacity of replica j.
Li Average exec time of requests with request i’s adapter.
γ Migration factor to control the request migration frequency.
η Affinity factor to control the affinity between requests.

Table 1: Key notations in the migration problem.

intermediate results is either resident in the GPU memory or
host memory (i.e., xi, j = xG

i, j + xH
i, j ≤ 1).

The overall running time of requests on each replica in-
cludes execution time and swapping overhead. On replica j,
the execution time of request i is Lixi, j, where Li is the average
execution time of requests i. We scale the execution time by
multiplying a migration factor γ to account for the migration
time of request i. γ is calculated as the ratio of total exe-
cuted time, including the migration time, to the total executed
time without migration, inhibiting the frequent migration be-
tween replicas. As for swapping overhead, it is represented
as MR

i xH
i, j/B, where MR

i is the memory consumption and B is
the PCIe bandwidth. As a result, the overall running time of
replica j is estimated as ∑i

(
γ×Lixi, j +MR

i xH
i, j/B

)
. Because

the dynamic batching algorithm prefers to batch requests with
the same type, we also add a penalty term η∑k yk, j to repre-
sent the affinity among the same type of requests, where η is
a hyperparameter. For all parallel replicas, the overall running
time is the maximum running time of all replicas:

Min.
(

max
j

∑
i
(γ×Lixi, j +MR

i xH
i, j/B)+η∑

k
yk, j

)
Adapter-request matching constraints. Different from classi-
cal load balancing problems [15–17], the adapter-request co-
migration algorithm needs to consider both the migration of
requests and the loading of LoRA adapters at the same time.
One request can only be migrated to the replica only if there
is a corresponding adapter available, which is formulated as
following adapter-request matching constraints:

∀i, j, yi, j ≥ xi, j

Memory constraints. For each replica, the GPU memory con-
sumption cannot exceed the GPU memory capacity. We define
MG

j as the GPU memory capacity and MH
j as the host memory

capacity of replica j. We get two constraints for GPU and
Host memory, respectively:{

∀ j, ∑i MR
i · xG

i, j +∑k MA
k · yk, j ≤ MG

j

∀ j, ∑i MR
i · xH

i, j ≤ MH
j

Existence constraints. Last but not least, the existence con-
straints ensure that each request is only placed in one replica,
which is represented as:

∀i, ∑
j

xi, j = 1

ILP formulation. Given the above objective and con-
straints, we formulate the co-migration problem as an
ILP problem, where matrices xG, xH , and y are the vari-
ables. dLoRA solves the problem with the off-the-shelf ILP
solver [28] and gets the optimal placement plan (i.e., xG, xH ,
and y). According to this plan, dLoRA migrates the intermedi-
ate states of requests and loads LoRA adapters simultaneously.
dLoRA also reserves a chunk of memory in each replica,
which is utilized to replicate additional LoRA adapters to
maximize the burst tolerance as described in the proactive
mechanism (§5.1). With this approach, dLoRA’s co-migration
algorithm effectively achieves load balancing across replicas
with optimal performance.

Selective migration with constraints relaxation. The above
ILP formulation offers an optimal migration plan, but its large
decision space introduces computation overhead. As the GPU
cluster and request number expand, the ILP’s complexity in-
creases exponentially. To address this, dLoRA employs two
domain-specific heuristics to accelerate such solving process.

Our first insight is that migration is necessary primarily dur-
ing extreme load imbalance. Therefore, dLoRA only triggers
the migration algorithm when the available GPU memory of
a replica is beyond a memory threshold or the queuing delay
of requests in a replica is beyond a computation threshold.
This approach effectively minimizes the migration frequency,
thereby amortizing the migration overhead. Besides, simi-
lar to selective replication [15–17], dLoRA only considers
migration between top K overloaded replicas and top K un-
derloaded replicas. As a result, the complexity of the selective
migration only depends on K rather than the cluster scale.

Our second insight is that the ILP problem can be simplified
by relaxing the constraints. In practice, migration is imple-
mented as token transfer and subsequent intermediate state
reconstruction, which is much faster than direct intermediate
state migration [12]. As a result, dLoRA does not differentiate
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the requests on the GPU memory and host memory. Instead,
dLoRA only considers the total memory consumption of re-
quests and LoRA adapters. We assume that additional mem-
ory consumption is swapped out to the host memory which is
always sufficient in practice. Therefore, memory constraints
are negligible, with only the swapping overhead added to the
total execution time.

Last, to reduce the complexity of the ILP problem, the
variable matrix x is relaxed to the real number. Given the real
number matrix x, the placement of each request is determined
by the largest element in the corresponding row of x. For
instance, request i is placed in replica j′ if xi, j′ = max j xi, j.
With these techniques, dLoRA is able to solve the optimal
adapter-request co-migration plan within milliseconds.

6 Implementation

We implement a prototype of dLoRA based on vLLM [12]
with about 6.2K LOC. We use vLLM to build dLoRA as
vLLM is the state-of-the-art serving system with advanced
features such as PagedAttention and iteration-level schedul-
ing. The prototype includes a FastAPI [29] frontend, a global
scheduler, and GPU-based execution engines. The frontend
of dLoRA extends the vLLM FastAPI [29] frontend, enables
client-specific LoRA adapter selection per request. dLoRA’s
global load balancer is responsible for dispatching requests
to LLM replicas and dynamically migrating requests. It uses
Ray [30] actor to interact with execution engines in the clus-
ter and utilizes Pulp [28] to solve the ILP problem defined
in §5. The execution engine also uses Ray [30] actor for key-
value cache management and LoRA adapter management. To
support unmerged inference in §4, we transform the LoRA
type of each request into a one-hot vector and generate a
request-type mapping matrix of the current batch. We then
utilize the einsum function provided by PyTorch to achieve
parallel matrix multiplication and integrate it into the execu-
tion engine. We add LoRA adapters to the vLLM execution
engine and swap adapters between GPU and host memory
asynchronously to reduce overhead. As for model executor,
we implement LoRA inference for popular LLMs, includ-
ing OPT [31] and Llama-2 [2]. dLoRA also accomplishes
Megatron-LM [32] style tensor parallelism on LoRA adapters
to support distributed execution of large models which can
not fit in a single GPU, e.g., Llama-2-70B. dLoRA can be
integrated with other frameworks, such as Ray Serve [33]. On
the server side, similar to HuggingFace PEFT [10], the cluster
administrator needs to provide additional LoRA information,
including LoRA adapter weights, LoRA adapter name and
its dependency on the base LLM, before launching the ser-
vice. dLoRA takes charge of other things. When sending a
request to dLoRA, the client side specifies the LoRA adapter
name in the request. dLoRA dispatches the request to the
corresponding LoRA adapter and returns the result.

Model Size # of Layers # of Heads Hidden Size

Llama-2-7B 13GB 32 32 4096
Llama-2-13B 26GB 40 40 5120
Llama-2-70B 132GB 80 64 8192

Table 2: Model configurations.

7 Evaluation

In this section, we first demonstrate the end-to-end perfor-
mance improvements of dLoRA over state-of-the-art LLM
serving systems under diverse workloads and models. Then,
we evaluate the design choices of dLoRA and show the effec-
tiveness of each component.

7.1 Experiment Setup

Testbed. We evaluate dLoRA on a four-node GPU cluster,
each with eight NVIDIA A800 80GB GPUs, i.e., 32 GPUs in
total. Each node is equipped with 128 CPUs, 2048 GB of host
memory, and a 200 Gbps InfiniBand NIC. We use PyTorch
12.1.0 and NVIDIA CUDA 12.2 for our evaluation.

Models. We choose the widely-used open-sourced LLMs,
Llama-2 model series [2], as the pre-trained LLMs (i.e., base
LLMs) for our evaluation. We use various Llama-2 models
with different sizes, including Llama-2-7B, Llama-2-13B, and
Llama-2-70B. The details of these models are shown in Ta-
ble 2. The rank of LoRA adapters is set to 8, as used in the
evaluation of prior work [8, 9].

Workloads. Similar to prior work [12], we generate work-
loads based on the ShareGPT dataset [26]. ShareGPT is a
dataset collected from real-world conversations with Ope-
nAI ChatGPT shared by users. We sample the arrival pattern
of requests based on the production traces, Microsoft Azure
function trace 2019 (MAF1) [34] and 2021 (MAF2) [25].
Although these traces are collected from Azure serverless
functions, they are also widely used as the proxy of the LLM
inference traces by prior work on model serving [13, 14]. Be-
cause the number of functions is larger than that of LLMs, we
sort the functions based on the function invocation frequen-
cies and map the functions to LoRA LLMs in a round-robin
manner. To demonstrate different load patterns, we define the
skewness as the number of each round-robin mapping. For
example, if we map the first 10 functions to the first LoRA
LLM, the second 10 functions to the second LoRA LLM, and
so on, the skewness is 10. The larger the skewness, the more
skewed the workload. To illustrate the impact of increasingly
longer requests [35], we also scale the input and output length
of requests by a scale ratio factor in §7.4.

Metrics. We use the average latency as the primary metric to
evaluate the performance of dLoRA. Following prior work
on LLM serving [11, 12], the average latency is calculated by
dividing the sum of each request’s end-to-end latency by the
total number of output tokens. To compare different systems,
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Figure 9: Average latency of different serving systems with Llama-2 models.

we set a latency service level objective (SLO) and compare
the maximum throughput achieved by each system under the
SLO. Similar to prior work, we set the latency SLO to 10×
of the latency of a single iteration in the decoding phase.
Specifically, SLO is 0.5 seconds based on our profiling.

Baselines. Because there is no existing system that specifi-
cally targets LoRA LLM serving. We compare dLoRA with
two state-of-the-art LLM serving systems.
• vLLM (uniform allocation) [12]: vLLM is the state-of-

the-art LLM serving system. It is a general-purpose LLM
serving system, and ignores the multi-LLM serving sce-
nario. To evaluate the performance of vLLM in the LoRA
serving setting, we deploy multiple vLLM instances on
the same cluster and uniformly allocate resources between
them.

• PEFT [10]: PEFT is a HuggingFace library for parameter-
efficient fine-tuning models. Although it can be used to
serve LLMs, it does not support advanced features like
selective batching [11] and PagedAttention [12]. To con-
duct a fair comparison, we implement these features for
PEFT. PEFT batches requests based on their types and
swap adapters between batches if necessary.

7.2 End-to-End Performance

We first compare end-to-end performance of dLoRA with
vLLM (uniform allocation) and PEFT under MAF1 and
MAF2 workload traces on Llama-2-7B, Llama-2-13B and
Llama-2-70B models. The first column of Figure 9 shows
the performance of these LLM serving systems when serving

128 Llama-2-7B models. Since Llama-7B is relatively small,
the total GPU memory can accommodate full parameters of
all models. However, vLLM (uniform allocation) and PEFT
cannot dynamically batch different types of requests (i.e., un-
merged inference) based on different workload patterns. In
this case, dLoRA improves the throughput by up to 10.6×
compared to vLLM (uniform allocation) and up to 11.5×
compared to PEFT under the SLO requirement.

The second column of Figure 9 shows the performance
of these LLM serving systems when serving 128 Llama-2-
13B models. Since Llama-13B is larger than Llama-7B, the
total GPU memory cannot accommodate full parameters of
all models. As a result, vLLM (uniform allocation) which
treats each LoRA LLM as an individual LLM has to swap
the model parameters between host and GPU memory. Thus,
dLoRA improves the throughput by up to 53.0× compared
to vLLM (uniform allocation) under the SLO requirement.
PEFT shares the base LLM between different LoRA LLMs to
reduce memory footprint, but it does not have adapter-request
migration. This significantly degrades the performance of
PEFT. As a result, dLoRA improves the throughput by up to
15.0× compared to PEFT under the SLO requirement.

The third column of Figure 9 shows the performance im-
provement of dLoRA when serving 32 Llama-2-70B models
in the cluster. Llama-2-70B is even larger than the GPU mem-
ory capacity of a single NVIDIA A800 80GB GPU. There-
fore, the Llama-2-70B is partitioned across 4 GPUs with
the tensor parallelism. As shown in Figure 9, the techniques
employed by dLoRA integrate effectively with existing paral-
lelism strategies and dLoRA improves the throughput by up
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Figure 10: Effectiveness of the credit-based dynamic batching
algorithm.

to 57.9× compared to vLLM (uniform allocation) and up to
26.0× compared to PEFT under the SLO requirement.

7.3 Effectiveness of Dynamic Batching

To show the effectiveness of dynamic batching with thresh-
olds tuning, we compare the performance of dLoRA with
strawman solutions described in §4. The experiments are
conducted in a single NVIDIA A800 80GB GPU to serve
8 LoRA Llama-2-7B models, which avoids the effect of the
adapter-request co-migration algorithm.

Figure 10(a) shows the average latency under diverse skew-
ness. The arrival rate is set to make the average latency of
dLoRA approximately equal to the SLO requirement. The first
strawman solution, Merged-only, which always uses merged
inference, performs poorly when the skewness is low, i.e.,
the type of requests is diverse, since it cannot serve different
requests at the same time. Therefore, dLoRA improves the la-
tency by up to 3.9×. The other strawman solution, Unmerged-
only, which always uses unmerged inference, performs simi-
larly no matter how the skewness changes. However, when the
skewness is high, i.e., a few types of requests are dominant,
Unmerged-only cannot take advantages of merged inference
to avoid extra computation overhead caused by the adapter
computation. Consequently, dLoRA improves the latency by
up to 2.4× compared to Unmerged-only. In short, dLoRA dy-
namically switches between merged and unmerged inference
based on the runtime workload, and always outperforms the
two strawman solutions and achieves the optimal tradeoff.

In addition to the average latency, we also record the
P90 latency of the three solutions with the same setting. As
shown in Figure 10(b), dLoRA outperforms Merged-only and
Unmerged-only by up to 5.2× and 2.5×, respectively. This
consistent performance improvement indicates that although
dLoRA may preempt some requests to serve other requests,
the credit-based starvation prevention mechanism of dynamic
batching improve performance while avoiding starvation.

7.4 Effectiveness of Dynamic Load Balancing

To show the effectiveness of the proactive and reactive dy-
namic load balancing, we compare the performance of dLoRA
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Figure 11: Effectiveness of the adapter-request co-migration
algorithm.

with two strawman solutions. We measure the average queu-
ing delay of requests, an important indicator of load imbal-
ance. Due to the limited budget, this experiment is conducted
on a server with 8 NVIDIA A800 80GB GPUs. Figure 11(a)
shows the experiment result. The first strawman solution is RR
that directly dispatches requests to the corresponding LoRA
LLMs preloaded by the workload-aware adapter placement
in a round-robin manner without considering the bursty load
imbalance (§5). Since RR does not consider the bursty load
imbalance at all, dLoRA outperforms RR by 3.6× under the
SLO requirement. The second strawman solution is Proactive
Dispatch which only supports proactive mechanism in §5.1
without reactive migration. However, due to the variable and
unpredictable length of requests, Proactive Dispatch cannot
handle this unpredictable run-time load imbalance. In con-
trast, dLoRA dynamically migrates requests between replicas
to balance the load and outperforms Proactive Dispatch by
1.4× under the SLO requirement.

We also evaluate the stability of the dynamic load balanc-
ing algorithm under different scale ratio factors of input and
output length of requests. Figure 11(b) shows the average
latency of requests under different ratios. Because RR can-
not dynamically change LoRA adapter distribution across
replicas as the ratio increases, the average latency of requests
increases rapidly, and thus the average latency of RR is up
to 23.5× higher than dLoRA. Although Proactive Dispatch
Only is able to dynamically load LoRA adapters and dispatch
the requests to mitigate load imbalance (i.e., it outperforms
RR by up to 6.5×), it is not able to migrate requests between
replicas to handle increasingly variable requests, leading to
unpredictable load imbalance. As a result, the average latency
of Proactive Dispatch is up to 2.39× higher than dLoRA.

7.5 Scalability and Overhead

For a cluster-scale serving system, we conduct evaluations
to analyze the scalability of dLoRA. Figure 12 shows the
throughput of dLoRA under different numbers of adapters.
We increase the number of adapters increases while keeping
the arrival rate constant. As the number of adapters increase,
dLoRA achieves stable throughput. However, vLLM (uniform
allocation) faces scalability challenges because it has to main-
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Figure 13: GPU utilization of dLoRA.
tain separate instances of full LLM weights for each LoRA
LLM whcih incurs high memory footprint. PEFT struggles to
scale efficiently as well because it cannot dynamically batch
different types of requests. Moreover, the two baselines can-
not manage the load imbalance between replicas. As a result,
the throughput of vLLM (uniform allocation) and PEFT de-
creases by up to 3.0× and 1.5× respectively, as the number
of adapters increases to 128.

We also evaluate the runtime overhead of dLoRA. Fig-
ure 15 breaks down the total latency of dLoRA’s inference
into three parts: the solving time of the ILP solver for the dy-
namic co-migration algorithm, the switching overhead of the
dynamic batching algorithm, and the actual inference time. As
shown in this figure, the overhead introcduced by dLoRA, i.e.,
ILP solving time and the switching overhead, are negligible
compared to the actual inference time. The actual inference
time consistently accounts for over 96.7% of the total latency,
regardless of the arrival rate. The negligible runtime overhead
of dLoRA mainly comes from the fact that dLoRA migrates
requests or switches inference mode occasionally and the
overhead is amortized by a number of iterations.

7.6 GPU Utilization

To show the GPU utilization, we measure the streaming mul-
tiprocessor (SM) utilization and GPU memory utilization
of each replica in the cluster.The setup is the same as §7.4.
dLoRA serves the Llama-2-13B model. The request rate is
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Figure 14: Comparison with SLoRA.
set to make the average latency of dLoRA approximately
equal to the SLO requirement. We also measure the opti-
mal SM utilization and GPU memory utilization when all
requests belong to the same type, and vLLM always uses
merged inference. As shown in Figure 13, although requests
belong to different LoRA types, dLoRA achieves nearly the
same SM utilization and GPU memory utilization compared
to the optimal utilization, which indicates that dLoRA effec-
tively utilizes the GPU resources and avoids resource waste
as shown in Figure 2(a). Besides, the SM utilization and GPU
memory utilization among replicas are balanced, which shows
the effectiveness of the dynamic load balancing algorithm.

7.7 Comparison with Concurrent Work

S-LoRA [18] is a concurrent work for serving multiple LoRA
LLMs. S-LORA also tries to batch requests destined for dif-
ferent LoRA adapters. However, S-LoRA does not consider
the load imbalance between replicas and is not able to dynam-
ically switch between merged and unmerged inference. The
parallelism strategy proposed by S-LoRA is also orthogonal
to dLoRA. Figure 14 compares dLoRA with S-LoRA using
the same setting as §7.3. As shown in the figure, no matter
how the skewness changes, dLoRA consistently outperforms
S-LoRA by up to 1.8× in terms of average latency. The reason
is that S-LoRA statically serves requests by unmerged-only
inference, which ignores the opportunity of using merged
inference to reduce the computation overhead. In contrast,
dLoRA exploits this opportunity and is more effective in
handling diverse requests with different LoRA types.

8 Related Work

LLM serving systems. Recently, many works have been
proposed for LLM serving. Orca [11] proposes iteration-
level scheduling to continuously batch requests with different
lengths at the iteration level. vLLM [12] proposes a Page-
dAttention operator and a block-based KV cache manage-
ment mechanism to reduce GPU memory fragmentation. Fast-
Serve [19], DeepSpeed-FastGen [36], and SARATHI [37]
leverage the characteristics of LLM serving to schedule re-
quests with different lengths. Nvidia FasterTransformer [38],
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DeepSpeed Inference [39], and the Google serving system
for PaLM [40] optimize the GPU/TPU implementation and
parallelism specifically for LLM inference. FlexGen [41] uses
offloading to improve the throughput of LLM serving. SpecIn-
fer [42] uses speculative decoding to reduce the latency of
LLM serving systems. SpotServe [43] tries to leverage spot in-
stances to reduce the cost of LLM serving. These works focus
on the optimization of a single LLM. In contrast, dLoRA is a
serving system for multiple LoRA LLMs in a GPU cluster.

S-LoRA [18] and Punica [44] are concurrent works that
also propose to serve multiple LoRA LLMs by batching re-
quests destined for different adapters. S-LoRA proposes a new
parallelism strategy, which is orthogonal to dLoRA. Punica
uses an ad-hoc migration strategy to reduce the number of
used GPUs, which is also different from dLoRA. dLoRA pro-
poses dynamic load balancing algorithms to balance the load
among GPUs, which is not considered in Punica and S-LoRA.
They also overlook the opportunity of using merged inference
to further reduce the latency of LLM serving by only adopting
a merged-only inference strategy.

Traditional DNN serving systems. Many production-ready
DNN serving systems have been developed, such as Tensor-
flow Serving [45] and Triton Inference Server [46], but they
do not have LLM-specific optimizations. Some recent DNN
serving systems, such as Clipper [47], ClockWork [48], SH-
PHERD [13], Tabi [49], and Paella [50] serves multiple DNN
models in cluster wide, but they mainly focus on small DNN
models, such as ResNet and BERT. AlpaServe [14] leverages
diverse parallelism strategies to accelerate serving multiple
large DNN models in a GPU cluster, but it does not target
autoregressive LLM serving and LoRA models. PetS [24]
considers the scenario of serving multiple parameter-efficient
DNN models in a GPU server, but it does not consider serv-
ing autoregressive LLMs in a GPU cluster and the unique
system characteristics of LoRA adapters. DVABatch [51]
uses multi-entry multi-exit batching to serve diverse models
simultaneously, but it does not target either LLMs or LoRA.

Load balancing. Load balancing has been studied in many re-

search fields, such as networking and cloud computing. Many
load balancers, such as Ananta [52], Beamer [53] and Ma-
glev [54], try to improve the performance of dispatching pack-
ets, but as discussed above, it is not sufficient to solve load
imbalance in our scenario. Other kinds of load balancers, such
as Pegasus [15], Scarlett [16] and E-Store [55], adopt selec-
tive replication or migration to balance the load. However,
they are not suitable for our scenario, and the dependency
between requests and adapters makes the load imbalance in
our scenario even more complicated.

9 Conclusion

We present dLoRA, an inference serving system for LoRA
models. dLoRA dynamically orchestrates requests and
adapters for efficient LLM serving in each worker replica
and across worker replicas. For each replica, dLoRA employs
a dynamic batching technique to leverage both merged and
unmerged inference to improve the efficiency of LLM serving.
For the cluster, dLoRA employs a dynamic load balancing
technique to migrate both requests and adapters to balance
the load among worker replicas. Based on these techniques,
we build a system prototype of dLoRA. Evaluation on pro-
duction traces shows that dLoRA achieves up to 57.9× and
26.0× higher throughput than vLLM and HugginFace PEFT.
dLoRA also achieves up to 1.8× lower average latency than
the concurrent work S-LoRA.

Acknowledgments. We sincerely thank our shepherd and the
anonymous reviewers for their valuable feedback. This work
was supported by the National Natural Science Foundation
of China under the grant number 62325201, 62172008, and
the National Natural Science Fund for the Excellent Young
Scientists Fund Program (Overseas). Xuanzhe Liu is the cor-
responding author. Bingyang Wu, Ruidong Zhu, Zili Zhang,
Xuanzhe Liu and Xin Jin are also with the Key Laboratory of
High Confidence Software Technologies (Peking University),
Ministry of Education.

References

[1] OpenAI, “GPT-4 technical report,” 2023.

[2] H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi,
Y. Babaei, N. Bashlykov, S. Batra, P. Bhargava, S. Bhos-
ale, et al., “Llama 2: Open foundation and fine-tuned
chat models,” arXiv, 2023.

[3] B. Roziére, J. Gehring, F. Gloeckle, S. Sootla, I. Gat,
X. E. Tan, Y. Adi, J. Liu, T. Remez, J. Rapin,
A. Kozhevnikov, I. Evtimov, J. Bitton, M. Bhatt, C. C.
Ferrer, A. Grattafiori, W. Xiong, A. Défossez, J. Copet,
F. Azhar, H. Touvron, L. Martin, N. Usunier, T. Scialom,
and G. Synnaeve, “Code Llama: Open Foundation Mod-
els for Code,” arXiv, 2023.

USENIX Association 18th USENIX Symposium on Operating Systems Design and Implementation    923



[4] “OpenAI Documentation: Fine-tuning.” https://pl
atform.openai.com/docs/guides/fine-tuning,
2023.

[5] “Announcing Anyscale Private Endpoints and Anyscale
Endpoints Fine-tuning.” https://www.anyscale.com
/blog/announcing-anyscale-private-endpoin
ts-and-anyscale-endpoints-fine-tuning, 2023.

[6] “Customize a model with Azure OpenAI Service.” ht
tps://learn.microsoft.com/en-us/azure/ai-s
ervices/openai/how-to/fine-tuning?tabs=tur
bo%2Cpython&pivots=programming-language-s
tudio, 2023.

[7] “Fine-Tuning Llama 2 with Together.ai: A Step-by-Step
Guide.” https://blog.gopenai.com/fine-tunin
g-llama-2-with-together-ai-a-step-by-ste
p-guide-cf2f3cce659d, 2023.

[8] E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang,
L. Wang, and W. Chen, “LoRA: Low-Rank Adaptation
of Large Language Models,” in ICLR, 2022.

[9] T. Dettmers, A. Pagnoni, A. Holtzman, and L. Zettle-
moyer, “QLoRA: Efficient Finetuning of Quantized
LLMs,” arXiv, 2023.

[10] S. Mangrulkar, S. Gugger, L. Debut, Y. Belkada, S. Paul,
and B. Bossan, “PEFT: State-of-the-art Parameter-
Efficient Fine-Tuning methods.” https://github.c
om/huggingface/peft, 2022.

[11] G.-I. Yu, J. S. Jeong, G.-W. Kim, S. Kim, and B.-
G. Chun, “Orca: A Distributed Serving System for
Transformer-Based Generative Models,” in USENIX
OSDI, 2022.

[12] W. Kwon, Z. Li, S. Zhuang, Y. Sheng, L. Zheng, C. H.
Yu, J. E. Gonzalez, H. Zhang, and I. Stoica, “Efficient
Memory Management for Large Language Model Serv-
ing with PagedAttention,” in ACM SOSP, 2023.

[13] H. Zhang, Y. Tang, A. Khandelwal, and I. Stoica, “SHEP-
HERD: Serving DNNs in the Wild,” in USENIX NSDI,
2023.

[14] Z. Li, L. Zheng, Y. Zhong, V. Liu, Y. Sheng, X. Jin,
Y. Huang, Z. Chen, H. Zhang, J. E. Gonzalez, et al.,
“AlpaServe: Statistical Multiplexing with Model Paral-
lelism for Deep Learning Serving,” in USENIX OSDI,
2023.

[15] J. Li, J. Nelson, E. Michael, X. Jin, and D. R. K. Ports,
“Pegasus: Tolerating Skewed Workloads in Distributed
Storage with In-Network Coherence Directories,” in
USENIX OSDI, 2020.

[16] G. Ananthanarayanan, S. Agarwal, S. Kandula,
A. Greenberg, I. Stoica, D. Harlan, and E. Harris,
“Scarlett: Coping with Skewed Content Popularity in
Mapreduce Clusters,” in EuroSys, 2011.

[17] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski,
H. Lee, H. C. Li, R. McElroy, M. Paleczny, D. Peek,
P. Saab, D. Stafford, T. Tung, and V. Venkataramani,
“Scaling Memcache at Facebook,” in USENIX NSDI,
2013.

[18] S. Ying, C. Shiyi, L. Dacheng, H. Coleman, L. Nicholas,
Y. Shuo, C. Christopher, Z. Banghua, Z. Lianmin,
K. Kurt, et al., “S-LoRA: Serving thousands of concur-
rent lora adapters,” Conference on Machine Learning
and Systems, 2023.

[19] B. Wu, Y. Zhong, Z. Zhang, G. Huang, X. Liu, and X. Jin,
“Fast Distributed Inference Serving for Large Language
Models,” in arXiv, 2023.

[20] X. Wang, Y. Xiong, Y. Wei, M. Wang, and L. Li, “Light-
Seq: A High Performance Inference Library for Trans-
formers,” in NAACL, 2021.

[21] A. Chavan, Z. Liu, D. Gupta, E. Xing, and Z. Shen,
“One-for-All: Generalized LoRA for Parameter-Efficient
Fine-tuning,” arXiv, 2023.

[22] Y. Chen, S. Qian, H. Tang, X. Lai, Z. Liu, S. Han, and
J. Jia, “LongLoRA: Efficient fine-tuning of long-context
large language models,” arXiv, 2023.

[23] T. Gong, C. Lyu, S. Zhang, Y. Wang, M. Zheng, Q. Zhao,
K. Liu, W. Zhang, P. Luo, and K. Chen, “Multimodal-
GPT: A vision and language model for dialogue with
humans,” arXiv, 2023.

[24] Z. Zhou, X. Wei, J. Zhang, and G. Sun, “PetS: A unified
framework for Parameter-Efficient transformers serving,”
in USENIX ATC, 2022.

[25] Y. Zhang, I. n. Goiri, G. I. Chaudhry, R. Fonseca, S. El-
nikety, C. Delimitrou, and R. Bianchini, “Faster and
cheaper serverless computing on harvested resources,”
in ACM SOSP, 2021.

[26] “ShareGPT Teams.” https://sharegpt.com/, 2023.

[27] “Introducing ChatGPT.” https://openai.com/blog/
chatgpt, 2022.

[28] “PuLP: A Python Linear Programming API..” https:
//github.com/coin-or/pulp, 2009.

[29] “FastAPI Documentation..” https://fastapi.tian
golo.com/, 2018.

924    18th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://platform.openai.com/docs/guides/fine-tuning
https://platform.openai.com/docs/guides/fine-tuning
https://www.anyscale.com/blog/announcing-anyscale-private-endpoints-and-anyscale-endpoints-fine-tuning
https://www.anyscale.com/blog/announcing-anyscale-private-endpoints-and-anyscale-endpoints-fine-tuning
https://www.anyscale.com/blog/announcing-anyscale-private-endpoints-and-anyscale-endpoints-fine-tuning
https://learn.microsoft.com/en-us/azure/ai-services/openai/how-to/fine-tuning?tabs=turbo%2Cpython&pivots=programming-language-studio
https://learn.microsoft.com/en-us/azure/ai-services/openai/how-to/fine-tuning?tabs=turbo%2Cpython&pivots=programming-language-studio
https://learn.microsoft.com/en-us/azure/ai-services/openai/how-to/fine-tuning?tabs=turbo%2Cpython&pivots=programming-language-studio
https://learn.microsoft.com/en-us/azure/ai-services/openai/how-to/fine-tuning?tabs=turbo%2Cpython&pivots=programming-language-studio
https://learn.microsoft.com/en-us/azure/ai-services/openai/how-to/fine-tuning?tabs=turbo%2Cpython&pivots=programming-language-studio
https://blog.gopenai.com/fine-tuning-llama-2-with-together-ai -a-step-by-step-guide-cf2f3cce659d
https://blog.gopenai.com/fine-tuning-llama-2-with-together-ai -a-step-by-step-guide-cf2f3cce659d
https://blog.gopenai.com/fine-tuning-llama-2-with-together-ai -a-step-by-step-guide-cf2f3cce659d
https://github.com/huggingface/peft
https://github.com/huggingface/peft
https://sharegpt.com/
https://openai.com/blog/chatgpt
https://openai.com/blog/chatgpt
https://github.com/coin-or/pulp
https://github.com/coin-or/pulp
https://fastapi.tiangolo.com/
https://fastapi.tiangolo.com/


[30] P. Moritz, R. Nishihara, S. Wang, A. Tumanov, R. Liaw,
E. Liang, M. Elibol, Z. Yang, W. Paul, M. I. Jordan, and
I. Stoica, “Ray: A distributed framework for emerging
AI applications,” in USENIX OSDI, 2018.

[31] S. Zhang, S. Roller, N. Goyal, M. Artetxe, M. Chen,
S. Chen, C. Dewan, M. Diab, X. Li, X. V. Lin, T. Mi-
haylov, M. Ott, S. Shleifer, K. Shuster, D. Simig,
P. S. Koura, A. Sridhar, T. Wang, and L. Zettlemoyer,
“OPT: Open Pre-trained Transformer Language Models,”
arXiv, 2022.

[32] M. Shoeybi, M. Patwary, R. Puri, P. LeGresley, J. Casper,
and B. Catanzaro, “Megatron-LM: Training Multi-
Billion Parameter Language Models Using Model Par-
allelism,” arXiv, 2020.

[33] “Ray serve: Scalable and programmable serving.” http
s://docs.ray.io/en/latest/serve/index.html,
2023.

[34] M. Shahrad, R. Fonseca, I. Goiri, G. Chaudhry, P. Batum,
J. Cooke, E. Laureano, C. Tresness, M. Russinovich,
and R. Bianchini, “Serverless in the Wild: Characteriz-
ing and Optimizing the Serverless Workload at a Large
Cloud Provider,” in USENIX ATC, 2020.

[35] “Introducing Claude 2.1.” https://www.anthropic.
com/index/claude-2-1, 2023.

[36] “DeepSpeed-FastGen: High-throughput Text Genera-
tion for LLMs via MII and DeepSpeed-Inference.” ht
tps://github.com/microsoft/DeepSpeed/tree/
master/blogs/deepspeed-fastgen, 2023.

[37] A. Agrawal, A. Panwar, J. Mohan, N. Kwatra, B. S. Gula-
vani, and R. Ramjee, “SARATHI: Efficient LLM Infer-
ence by Piggybacking Decodes with Chunked Prefills,”
2023.

[38] N. Corporation, “FasterTransformer.” https://gith
ub.com/NVIDIA/FasterTransformer, 2019.

[39] R. Y. Aminabadi, S. Rajbhandari, A. A. Awan, C. Li,
D. Li, E. Zheng, O. Ruwase, S. Smith, M. Zhang,
J. Rasley, and Y. He, “DeepSpeed-Inference: Enabling
Efficient Inference of Transformer Models at Unprece-
dented Scale,” in SC, 2022.

[40] R. Pope, S. Douglas, A. Chowdhery, J. Devlin, J. Brad-
bury, J. Heek, K. Xiao, S. Agrawal, and J. Dean, “Effi-
ciently scaling transformer inference,” Conference on
Machine Learning and Systems, 2023.

[41] Y. Sheng, L. Zheng, B. Yuan, Z. Li, M. Ryabinin,
B. Chen, P. Liang, C. Re, I. Stoica, and C. Zhang, “Flex-
Gen: High-throughput Generative Inference of Large
Language Models with a Single GPU,” International
Conference on Machine Learning (ICML), 2023.

[42] X. Miao, G. Oliaro, Z. Zhang, X. Cheng, Z. Wang,
R. Y. Y. Wong, A. Zhu, L. Yang, X. Shi, C. Shi, Z. Chen,
D. Arfeen, R. Abhyankar, and Z. Jia, “SpecInfer: Ac-
celerating Generative Large Language Model Serving
with Speculative Inference and Token Tree Verification,”
2023.

[43] P. Miao, C. Shi, J. Duan, X. Xi, D. Lin, B. Cui, and Z. Jia,
“SpotServe: Serving Generative Large Language Models
on Preemptible Instances,” ACM ASPLOS, 2024.

[44] L. Chen, Z. Ye, Y. Wu, D. Zhuo, L. Ceze, and A. Krish-
namurthy, “Punica: Multi-Tenant LoRA Serving,” Con-
ference on Machine Learning and Systems, 2023.

[45] C. Olston, N. Fiedel, K. Gorovoy, J. Harmsen, L. Lao,
F. Li, V. Rajashekhar, S. Ramesh, and J. Soyke,
“Tensorflow-serving: Flexible, high-performance ml
serving,” arXiv, 2017.

[46] N. Corporation, “Triton Inference Server: An Optimized
Cloud and Edge Inferencing Solution..” https://gith
ub.com/triton-inference-server/server, 2019.

[47] D. Crankshaw, X. Wang, G. Zhou, M. J. Franklin, J. E.
Gonzalez, and I. Stoica, “Clipper: A Low-Latency On-
line Prediction Serving System.,” in USENIX NSDI,
2017.

[48] A. Gujarati, R. Karimi, S. Alzayat, W. Hao, A. Kauf-
mann, Y. Vigfusson, and J. Mace, “Serving DNNs like
Clockwork: Performance Predictability from the Bottom
Up,” in USENIX OSDI, 2020.

[49] Y. Wang, K. Chen, H. Tan, and K. Guo, “Tabi: An Effi-
cient Multi-Level Inference System for Large Language
Models,” in EuroSys, 2023.

[50] K. K. W. Ng, H. M. Demoulin, and V. Liu, “Paella: Low-
Latency Model Serving with Software-Defined GPU
Scheduling,” in ACM SOSP, 2023.

[51] W. Cui, H. Zhao, Q. Chen, H. Wei, Z. Li, D. Zeng, C. Li,
and M. Guo, “DVABatch: Diversity-aware Multi-Entry
Multi-Exit batching for efficient processing of DNN
services on GPUs,” in USENIX ATC, 2022.

[52] P. Patel, D. Bansal, L. Yuan, A. Murthy, A. Greenberg,
D. A. Maltz, R. Kern, H. Kumar, M. Zikos, H. Wu,
C. Kim, and N. Karri, “Ananta: Cloud Scale Load Bal-
ancing,” in ACM SIGCOMM, 2013.

[53] V. Olteanu, A. Agache, A. Voinescu, and C. Raiciu,
“Stateless Datacenter Load-balancing with Beamer,” in
USENIX NSDI, 2018.

[54] D. E. Eisenbud, C. Yi, C. Contavalli, C. Smith,
R. Kononov, E. Mann-Hielscher, A. Cilingiroglu,

USENIX Association 18th USENIX Symposium on Operating Systems Design and Implementation    925

https://docs.ray.io/en/latest/serve/index.html
https://docs.ray.io/en/latest/serve/index.html
https://www.anthropic.com/index/claude-2-1
https://www.anthropic.com/index/claude-2-1
https://github.com/microsoft/DeepSpeed/tree/master/blogs/deepspeed-fastgen
https://github.com/microsoft/DeepSpeed/tree/master/blogs/deepspeed-fastgen
https://github.com/microsoft/DeepSpeed/tree/master/blogs/deepspeed-fastgen
https://github.com/NVIDIA/FasterTransformer
https://github.com/NVIDIA/FasterTransformer
https://github.com/triton-inference-server/server
https://github.com/triton-inference-server/server


B. Cheyney, W. Shang, and J. D. Hosein, “Maglev: A
Fast and Reliable Software Network Load Balancer,” in
USENIX NSDI, 2016.

[55] R. Taft, E. Mansour, M. Serafini, J. Duggan, A. J. El-
more, A. Aboulnaga, A. Pavlo, and M. Stonebraker, “E-
Store: Fine-Grained Elastic Partitioning for Distributed
Transaction Processing Systems,” Proceedings of the
VLDB Endowment, 2014.

926    18th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



A Appendix

A.1 Starvation Prevention of Algorithm 1

Algorithm 3 shows the pseudo-code of the credit-based dy-
namic batching algorithm to prevent starvation. Initially, we
assign the same credit to each LoRA adapter, which guar-
antees the fairness in the beginning. Whenever a request is
not served in the FCFS order, the credit of the corresponding
LoRA adapter needs to be transferred to the requests that
orignially should be served in the FCFS order (line 14 and
line 21). In this, way, if a LoRA adapter is not served for a
long time, it will accumulate enough credit and our algorithm
always serves them first (lines 11–15). We also prevent the
LoRA adapter to merge into the base LLM weights when
it does not have sufficient credit (line 18). To mitigate the
oscillation of starvation prevention between different LoRA
adapters, we set a threshold Tstarve to decide the starvation
(lines 6–10). This parameter can be tuned to make a tradeoff
between performance and fairness.

Algorithm 3 Credit-based Dynamic Batching
1: function CREDITBATCHING(B f c f s,R,S,L)
2: Input: FCFS requests B f c f s, Request R = {r1,r2, ...,rn}
3: Replica state S, LoRA adapters L = {l1, l2, ..., lm}
4: Output: The batch of requests to be executed Bnext
5: // Stavation Prevention
6: for l ∈ L do
7: if li.state == Sstarve ∧ li.credit < Tnormal then
8: li.state = Snormal
9: else if li.credit > Tstarve then

10: li.state = Sstarve

11: Lstarve = {li ∈ L | li.state == Sstarve}
12: Bstarve = {ri ∈ R | ri.type ∈ Lstarve}[: max_bs]
13: if |Bstarve|> 0 then
14: transfer_credit(Bstarve,B f c f s)
15: return Bnext = Bstarve

16:
17: // Adaptive switching between different modes
18: Leligible = {li| li.creidt ≥ credit({ri| ri.type== li},B f c f s)}
19: RET =DYNAMICBATCHING(B f c f s,R,S,Leligible)
20: if RET ! = B f c f s then
21: transfer_credit(RET,B f c f s)

22: return Bnext = RET
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