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Abstract—Decentralizing content delivery to edge devices has
become a popular solution for saving the bandwidth consumption
of CDN when the CDN bandwidth is expensive. One successful
realization is the hybrid CDN-P2P VoD system, where a client
is allowed to request video content from a number of seeds
(seed clients) in the P2P network. However, the seed scarcity
problem may arise for a video resource when there are an
insufficient number of seeds to satisfy requests to the video.
To alleviate this problem, many commercial VoD systems have
employed a video push mechanism that directly sends the recent
scarce video resources to randomly-chosen seeds to serve more
requests. However, the current video push mechanism fails to
consider which videos will become scarce in the future, or
differentiate the uploading capability of different seeds. In this
paper, we propose Proactive-Push, a video push mechanism
that lowers the bandwidth consumption of CDN by predicting
future scarce videos and proactively sending them to competent
seeds with strong uploading capabilities. Proactive-Push trains
neural network models to correctly predict 80% of future scarce
video resources, and identify over 90% of competent seeds.
We evaluate Proactive-Push using a trace-driven emulation
and a real-world pilot deployment over a commercial VoD
system. Results show that Proactive-Push can further reduce
the proportion of direct download from CDN by 21%, and save
the CDN bandwidth cost at peak time by 18%.

Index Terms—Video streaming, CDN, deep learning, edge
computing, network traffic control

I. INTRODUCTION

People are cutting the budget of cable TV at home, and

turning to online video streaming services for “on-demand”

access to TV shows and movies, a.k.a. video-on-demand

(VoD) streaming services (e.g., Netflix, Hulu Plus, iQIYI,

Youku). Accordingly, video service providers continuously

launch new programs of various forms and introduce new

strategies to provide good quality of experience (QoE) for

users [1]. There are two pain points when building a VoD

system. First, strategies designed for increasing client-side

QoE would probably increase the distance between the source

of videos and the clients and occupy much bandwidth, while

massive requests to the popular videos at peak time may

degrade the QoE of users due to limited bandwidth [2] or

poor network condition. Moreover, the bandwidth may cost

too much, as the Internet Service Provider (ISP) charges the

“last-mile delivery” [3] of the system for bandwidth consump-

tion by the overall throughput or the peak-time bandwidth

metering (e.g. the 95th percentile bandwidth metering [4]).

In this paper, we focus on the charging policies by the 95th

percentile bandwidth metering, as it empirically costs less on

the CDN.

Many solutions to reducing the bandwidth consumption of

CDN have been proposed, such as redirecting requests to

several appropriate edge servers by proxy server [5], caching

hot videos in edge servers in advance [6], etc. Limited by the

dynamic network conditions between the source of videos

and the clients, server side solutions may not always perform

as well as they are expected. Therefore, one prevailing way

in many Asia countries for addressing this problem is to

decentralize the transmission to edge devices to both reduce

the bandwidth consumption of the CDN and shorten the

distance between the source of videos and the clients [7].

Many types of terminal devices (clients) could be involved

under this edge computing paradigm, such as smart-routers,

PCs, mobile devices, etc. Resources can be transmitted among

edge devices, and the peer-to-peer (P2P) technology could

be leveraged to reduce the bandwidth consumption on CDN

servers, without changing the CDN server strategies. In such

an edge-assisted VoD system, a seed (or a seed device) may

own the copies of videos needed by other clients, and a client

can request the video content from the seed, instead of the

direct download from the CDN. This kind of edge-assisted

VoD system can be named as hybrid CDN-P2P network.

However, the seed scarcity problem may arise when there

are an insufficient number of seeds available to a certain video

in the P2P network for satisfying the massive P2P requests to

it [8]. To alleviate the seed scarcity, commercial hybrid CDN-

P2P VoD systems such as iQIYI1 have deployed a video push

mechanism [9]. The system directly sends the recent scarce

video resources to edge devices to serve more requests to

the videos through the P2P network. The current video push

mechanism fails to fully address the seed scarcity problem at

peak time, as it has no idea about which videos will become

scarce, or which seeds will be online/competent in the future.

In this paper, we propose Proactive-Push, a video push

1http://www.iqiyi.com/



mechanism for the hybrid CDN-P2P VoD system to schedule

sending the predicted scarce videos into the P2P network

before the peak time starts. Meanwhile, Proactive-Push ex-

cludes the poor-quality seeds that may disappear or have low

uploading bandwidth from the P2P streaming. This proac-

tively optimizes the assignment of scarce video resources to

competent seeds before the peak time, and greatly relieves the

stress of the CDN caused by direct download of scarce video

resources.

We evaluate the performance of Proactive-Push using the

traces of real video sessions collected from 1st March 2017

to 30 June 2017, over iQIYI, one of the largest video service

providers in China. iQIYI has attracted around 550 million

mobile devices and more than 250 million PC users monthly,

and it receives more than 6 billion hours of video-viewing

time every month in 2017. Then, we deploy it over one of

CDN servers that has hundreds of thousand videos and about

millions of users during the time period from 1st July 2017

to 14th July 2017. Results show that under various scenarios,

Proactive-Push can predict scarce videos at a precision rate

of about 80%, and correctly identify 90% of competent seeds

with strong uploading capabilities. Besides, Proactive-Push

can further reduce the proportion of direct download from

CDN by 21%, and save the last mile delivery cost by 18% in

the real-world deployment.

In summary, our contributions are of threefold:

• This is the first work that establishes a deep learning

(DL) based model to jointly predict the seed scarcity of

videos and clients’ uploading capability in the hybrid

CDN-P2P VoD system.

• By the DL-based model, we propose a proactive video

push mechanism that optimizes the recommendation of

scarce video resources to clients with strong uploading

capabilities.

• Results of trace-driven emulation and real-world deploy-

ment show that Proactive-Push has a high precision for

predictions of seed scarcity of videos and clients’ upload-

ing capability, and it can greatly relieve the seed scarcity,

and remarkably save the CDN bandwidth consumption

in the hybrid CDN-P2P VoD system.

II. RELATED WORK

Deployment of hybrid CDN-P2P systems. The hybrid

CDN-P2P system has become the most popular architecture

for VoD systems in Asia. There are also many researches on

the optimization of hybrid CDN-P2P architecture, by using

the P2P transmission to relieve the CDN load. Xu et al. [10]

put forward a hybrid CDN-P2P architecture for streaming

media distribution and analyze its performance by simulation.

Yin et al. [11] design a scalable hybrid CDN-P2P system

considering the reliability of CDN and the scalability of P2P.

Existing work has confirmed that the hybrid CDN-P2P system

can adapt to the exploding growth of internet video content

economically, without generating unaffordable burden on ISPs

[12].

Predicting the popularity of video content. There have

been many recent researches on predicting the popularity

of video content. Cha et al. [13] analyze the popularity

distribution and the popularity variation along with time

based on the Youtube data. In order to improve the accuracy

on predicting the popularity of videos, Flavio proposes an

algorithm by extracting relevant features [14]. Besides, Li et

al. [15] propose a propagation-based prediction framework

for predicting the video popularity in online social networks.

Time series prediction. A time series is a series of data

points indexed in time order, and time series prediction is the

use of a model to predict future values based on previously-

observed values of the time series data. Time series prediction

has been proved to be a promising way in the context of

quantitative finance, seismology, meteorology, etc. The auto-

correlation models compute the current value in the time

series as a function of a finite number of past values along

with some white noise. Auto regressive moving average model

(ARMA) and Auto regressive integrated moving average

model (ARIMA) [16] are the most common examples in this

category. Markovian models learn a stationary distribution

over a predefined or automatically deciphered state space,

and Hidden markov models (HMM) [17] for the hidden

states. Recently, neural networks like recurrent neural network

(RNN) [18] are designed to handle the sequence dependence.

III. VIDEO PUSH PROBLEM IN THE HYBRID CDN-P2P

VOD STREAMING SYSTEM

In this section, we first present a brief introduction to

the original video push mechanism in iQIYI, and then we

formulate the video push problem.

A. System architecture of iQIYI

The system consists of clients, the CDN, the P2P network,

and a video push mechanism, as shown in Fig. 1. Note that a

CODEC submodule has been embedded at both server- and

client-side, to prevent violating copyright of videos.
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Fig. 1: The structure of a commercial hybrid CDN-P2P VoD

system.

The goal of video push: Generally, a client is allowed

to download video segments from the CDN or neighboring



seed clients in the P2P network. The ISP does not charge

for the bandwidth consumed by video download from the

P2P network to clients. Instead, it charges for the bandwidth

consumed by video download from the CDN. Hence, the goal

of the video push mechanism is to reduce the peak bandwidth

consumed by video download from the CDN to clients. Based

on our observation, the peak bandwidth consumption always

happens within 21:30 to 23:00, when the total number of

video requests is far greater than other time periods of a day.

Therefore, we consider 21:30 to 23:00 as the peak hours of

a day in this paper.

The CDN: Here, we only present the high-level structure

of the system’s CDN.

• Edge server: Clients download video resources from

an edge server in the CDN. The edge server caches

frequently requested video resources, i.e., scarce in the

P2P network, according to the CDN cache strategy, and

meanwhile it asks for dispatching from the data center

if a client requests videos that are not stored on it.

• Proxy server: When a client requests a video, it sends

DNS requests for the URL of the video to the proxy

servers. The proxy servers respond to the request by

some appropriate edge servers according to the proxy

strategy based on the internet topology and traffic load

in the backbone network.

Clients (Edge devices): There are two types of clients, and

every client is required to periodically send certain control

information to the P2P tracker server and the video push

server. Moreover, the size of client buffer is limited.

• A regular client downloads the video content that the

user wants to watch into its buffer, without uploading the

buffer content to other neighboring clients. For example,

mobile devices are regular clients that do not upload

video contents into the P2P network for saving battery.

• A seed client, or simply seed, is a client that is willing to

upload the video content within its buffer to neighbor-

ing clients when the video is requested by others. For

example, non-mobile devices (PC, laptop) are candidate

seed clients that have the capability of uploading video

contents to others.

Local and remote video contents in seed buffer: The

buffer of a seed client contains two parts of contents: (1)

the local video content that the client/seed user has watched;

(2) the remote video content that is never watched by the

client/seed user himself but will be uploaded to neighboring

clients.

A large-size video is usually split into multiple video

segments of the same size. The segments are transmitted in the

VoD system and stored in the buffer of clients. For simplicity,

we simply treat each segment as a video in the following parts

of this paper.

Try P2P first for download: When requesting a video,

any client retrieves the list of neighboring seeds who have

the video content in their buffers from the P2P tracker server,

and then it tries to download the video from the P2P network

as much as possible. If the video resources in the P2P network

are insufficient to satisfy the requests, the client would start

requesting the remaining part of the video resource from an

edge server in the CDN as backup.

The current video push mechanism: The video push

mechanism instructs which scarce videos will be pushed to

which seed clients in the P2P network. In the current video

push mechanism,

• The seed clients with free bandwidths send requests

periodically to the video push server for requesting

remote video contents that are scarce (recall that a video

resource is scarce when there are an insufficient number

of seeds for satisfying the requests to this video).

• The video push server maintains a list of scarce videos,

which records the exact number of needed seeds for each

video. Besides, the server sets up a waiting queue of

client requests when multiple requests arrive simultane-

ously.

• The server directly pushes the most-recently scarce

video resources (i.e., the videos that experience the

seed scarcity problem most recently) to seeds with free

bandwidth in the P2P network.

B. The video push problem

Given a video push scheme A, a video set V and a client

set U , let Cv,t(A) denote the compensated number of needed

replicas from CDN for video v during a short time period t,

and let Pj,v,t(A) represent whether the server pushes video

v to client j during t.

Define a triad (ūj,v,t, pj,v,t, ij,v,t) to characterize the rela-

tionship between client j and video v during time period t,

where ūj,v,t represents the uploading capability of client j

for video v, while the other two variables indicate whether

client j requests playback of v and whether replica of v is in

the buffer of j during time period t, respectively. Note that

uj,t denotes the uploading capability of client j during time

period t, i.e. ∑

v∈V

ūj,v,t ≤ uj,t.

Therefore, the objective of the video push problem is to

minimize the peak overall traffic from CDN servers, i.e.

argmin
A

{max
t

{(
∑

j∈U

∑

v∈V

Pj,v,t(A) +
∑

v∈V

Cv,t(A)) · s}} (1)

s.t. ∑

j∈U

pj,v,t · s =
∑

j∈U

ūj,v,t + Cv,t(A) · s, (2)

ij,v,t · ub ≤ ūj,v,t ≤ ij,v,t · uj,t or ūj,v,t = 0, (3)

where s represents the size of the video segments, B is the

capacity of the client buffer, ub is the minimal rate over

a transmission link to avoid the slow-loris-like effect on

clients [19].

For each video, Constraint (2) prescribes that the total

amount of downloaded data is equal to the amounts of



uploaded data from both the P2P network and the CDN

servers. Besides, Constraint (3) imposes the restriction on the

uploading links in the P2P network: the client j can only

upload the data of video v during time period t if it holds the

replicas in its buffer, i.e., ij,v,t = 1; the uploading rate cannot

exceed the client’s uploading capability.

The video push scheme may both affect the bandwidth for

pushing replicas to clients and compensating requests from

clients in the future. Due to the dynamic tendency of users’

requests, it is complicated to figure out the exact condition of

the hybrid CDN-P2P network. Therefore, we have to carefully

choose a set of features and construct an appropriate model

to approximate the condition of the system.

IV. MOTIVATION FOR PROACTIVE VIDEO PUSH

A. Redundancy of the pushed video replicas at peak-time

The current video push strategy only considers pushing the

recent scarce videos to the P2P network, without any forward

looking over the future peak-time video scarcity that will

indeed determine the CDN bandwidth cost (e.g., according to

the 95th percentile bandwidth metering). Hence, it is possible

that the video push server may push more video replicas

to seed clients than what will be really needed at peak-

time. These redundant video replicas consume bandwidth

and resources that can be used for serving requests to other

peak-time scarce videos. According to the statistics of the

commercial system, we find that 27% of the video replicas

pushed before peak-time receive no requests at peak-time,

which confirms the redundancy of the pushed video replicas

at peak-time.

Hence, we need a new video push strategy that can predict

the video scarcity and the clients’ uploading capabilities so

as to avoid pushing redundant video contents.

B. Feasibility of predicting the video scarcity

The scarcity of a video is closely related to the number

of requests to the video. The more requests arrive at peak-

time, the more likely the video is to be scarce. According to

Constraint (2), if we can foresee the number of requests to

a video at peak-time, the system can calculate the number

of needed seeds, and pushes an appropriate number of video

replicas to the P2P network.

Three patterns in the number of video requests: We

observe that there are three patterns over the number of

requests to individual videos throughout a day in the com-

mercial system, as shown in Fig. 2. Each playback trace

of a video is unified by the peak-time number of video

requests during the day, and then the traces in our dataset

are grouped by k-means [18]. The first pattern represents

the videos released usually at midnight. These videos have

peak number of requests during noon and night the next day,

and they attract more attention at noon. The second pattern

corresponds to those videos whose peak number of requests

is achieved at night, while they also exhibit a lower peak at

noon. The third pattern portrays the tendencies which raise up

around evening and only have one peak at night. These three

conspicuous patterns indicate the feasibility of predicting the

peak number of video requests.

C. Feasibility of predicting the uploading capability of clients

The uploading capability of a client is dependent on its

uploading rate in the P2P network, which may vary over

time. It is important to predict which clients will have a

high uploading capability at peak-time, and push the predicted

scarce videos to the predicted competent clients.

Three patterns in the uploading capability of clients:

Then, we observe the uploading rate of individual clients, and

we unify the uploading rate of every client in a day by its peak

uploading rate of the day. Grouped by k-means, there are three

patterns of the uploading capability, as shown in Fig. 3. The

second pattern shows the greatest uploading capability in the

afternoon, while the greatest uploading capability of the third

pattern occurs at night. On the contrary, the first pattern shows

a relatively constant curve, which implies an always-on seed

client in the P2P network.

V. THE PROACTIVE-PUSH MECHANISM

Proactive-Push consists of three components: (1) prediction

of the number of requests to individual videos at peak-

time; (2) prediction of uploading capabilities of individual

clients; and (3) an allocation strategy that addresses the video-

client assignment problem—push predicted scarce videos to

predicted competent clients before the peak-time.

A. Prediction of the number of requests to individual videos

1) Features in focus: To have a better prediction of the

peak number of requests to a single video, we collect as much

information related to the video as possible. There are two

categories of features in focus: the contextual features that

would be variant within a short time (e.g., the number of video

requests); and the semantic features that would not change

within a short time (e.g., video tags including genres, actors,

actresses, creators).

Contextual features: There are two types of contextual

features that can contribute to the prediction:

• As indicated in Section IV, the number of video requests

during off-peak time has a positive correlation with the

peak number of the video requests at peak-time;

• The local video content in the client/seed’s buffer that

the seed user has watched can reflect the popularity of

the video.

Semantic features: Usually, most video requests direct to

a few popular videos. According to the statistics, we find

that during peak-time, several genres on videos obtain an

extremely high number of requests. The genres are carefully

labeled by the uploaders and the copyright owners in order

to make them easy to be searched or accessed by users.

To better describe the features, they are transformed into

01 coding vectors. As the genres are independent of the order

when they are labeled, we are inspired by the continuous

bag of words language model [20] and we are seeking to
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learn high dimensional embeddings for each genres in a

fixed vocabulary. Specifically, we solve the singular value

decomposition (SVD) [21] to learn the embeddings.

Besides, the age of a video since its release may also

contribute to predicting the peak number of video requests.

Based on our analysis on the data, it is revealed that most

videos reach the peak number of video requests during the

first couple of days since they are released online.

2) Design of the Neural Network (NN) model: It is non-

trivial to figure out the complex correlation among different

features. Hence, we introduce the feed-forward neural network

(FNN) model [18] to learn their correlation. The neural

network takes both the semantic and contextual features of

a video as inputs, and it provides the prediction of the peak

number of video requests as outputs. The structure of the

model is illustrated in Fig. 4.

Input of NN: As there may be many tags of genres on each

video, we should compute the mean of embeddings of the

related genres. Accordingly, a descriptive vector with a fixed

length is obtained. Meanwhile, the contextual information is

appended to the vector. The vector of video v during time

period t, denoted as xj,t, is then set as the input to the neural

network.

Output of NN: The goal is to learn a set of functions ft for

every time period t, which can predict the number of video

requests during peak hours, namely p̄v,tp .

Loss function: As the model may overfit on the training

set, we should add regulation to the loss function. Let p̄′v,tp
denote the real number of requests to video v during peak

hours. Therefore, the loss function can be written as:

Lt(V ; θ) = −
1

|V |

∑

v∈V

|p̄′v,tp − p̄v,tp |+ λ||θ||2, (4)

where λ is the regulation coefficient.

Activation function: Aiming at improving the precision

of the neural network and accelerating the training speed,

the hidden layers should be elaborately designed. Rectified

linear units (ReLU) are used as the activation function for

improving the network training speed and the classification

accuracy [18].

B. Prediction of the level of the uploading capability of clients

As previously observed from the three patterns in Sec-

tion IV, there is no positive correlation between the uploading

rate of a client and its peak value, and we then seek to predict

the pattern of the uploading capability of clients. Here, we

define five levels of the uploading capability of clients to

represent the possible patterns.

Levels of the uploading capability of clients: We use the

average uploading rate reported by the clients as an indicator

to determine the client’s uploading capability uj,t. According

to distribution of clients’ uploading rate and the prevailing

bandwidth rate provided by ISPs, we divide the uploading

rate into five levels, from 0 to 4, where level 0 represents that

the client is currently offline or cannot connect to other peer

clients in the P2P network; and clients in level h′ have higher

average uploading rate than clients in level h′′, if h′ > h′′.

LSTM for prediction of uploading capability levels: As

the client can periodically upload its uploading rate to the

server, the prediction could be transformed to a time series

prediction problem. The RNN model has been proved to be

efficient in solving the time series prediction problem. We

then implement an anti-long-term-dependency version, i.e.,

Long Short-Term Memory (LSTM) [22] network, to predict

the level of the uploading capability of clients. An LSTM is

well-suited to learn from the past experience to predict time

series, given time lags of unknown size and bound between

important events. The structure is shown in Fig. 5, where the

input for each LSTM cell is an one-hot encoding vector uj,t,

representing the uploading capability level of j at time period

t.



C. Pushing scarce videos to competent clients

1) Setting the pushing target: Let Ut denote the distribu-

tion of uploading capability of clients in the P2P network at

time period t. According to Constraint (2), the video push

server would try to place appropriate video replicas to seed

clients to decrease the bandwidth consumption from CDN.

Given a situation that a number of ι clients are cooperatively

uploading data for one video request, then the probability of

no bandwidth consumption from CDN could be written as

Pt(
∑

ξ∈[1,ι]

uξ ≥ s
∣∣uξ ∼ Ut).

The system would set a target probability threshold φ, in

expectation that each request would be fully fulfilled with

possibility φ, i.e.,

Pt(
∑

ξ∈[1,ι]

uξ ≥ s
∣∣uξ ∼ Ut) = φ.

Therefore, we could obtain a simplified pushing target to

promise that every request could be responded by at least

a number of ι seed clients. That is,

∀v ∈ V,
∑

j∈U

ij,v,t ≥ ι
∑

j∈U

pj,v,t. (5)

2) Maximizing the P2P throughput: We need to address

the video-client assignment problem that recommends scarce

videos to an appropriate client, so that the bandwidth con-

sumption from CDN could be minimized.

Let ηv,t denote the required number of replicas to be pushed

into the P2P network for video v at time period t. According

to Equ. (5), we have

ηv,t = max{ι
∑

j∈U

pj,v,t −
∑

j∈U

ij,v,t, 0}.

Given two clients j1 and j2, with uj1,t greater than uj2,t. Then

j1 should undertake the uploading of videos that require more

replicas, as it has a greater capability to upload more data

to other clients in the P2P network. Otherwise, the uploaded

data of j1 could be limited as the P2P transmission could have

already been saturated, while j2 may contribute little to the

system due to its limited uploading capability. Therefore, the

server should place scarce videos that require more replicas

to the clients with a greater uploading capability.

The procedure of Proactive-Push: We present the step-

by-step procedure of Proactive-Push in Algorithm 1, where

Z represents the time period for generating the list of to-

be-pushed scarce videos based on the prediction model in

Sec. V-A. Every time when the server receives a request from

client, a report of its uploading rate is also included, and the

server would then determine the future uploading capability

level of the client by the model in Sec. V-B.

The modified structure of the video push server is shown

in Fig. 6, which maintains a scarce video list recording the

videos with seeds in shortage, a seed client queue that sorts

the clients by their uploading capability levels, and a pushing

limitation controller that adjusts how much video content will

Algorithm 1 Procedure for Proactive-Push.

for every time period with length of Z do

⊲ Generate a list of scarce videos to be pushed L
according to the prediction model.

Estimate the total number of video requests as the

pushing limitation Ω̃.

⊲ Set the seed client queue ω as empty.

for every time window T do

repeat

⊲ Receive client j’s request.

⊲ Add client j into ω.

until Time window ends.

⊲ Sort clients in ω according to their uploading capa-

bility levels, and remove those with level 0.

⊲ Extract the top-K scarce videos from L to create a

temporary list L′ based on |ω|, |L| and Ω̃.

for every client j in ω in order do

⊲ Push the top-S different videos to client j.

⊲ Update L′.

end for

⊲ Merge L′ back to L.

⊲ Sort L by ηv , the required number of replicas to be

pushed into the P2P network for video v.

end for

end for

Push server

Seed clients 

queue

Pushing 

limitation

Scarce video 

list

Seed clients

Report 

& Require

Push 

replicas

Fig. 6: The structure of the push

server with Proactive-Push.

Fig. 7: The neural net-

work on predicting the to-

tal number of video re-

quests at peak-time.

be pushed in the future, based on the estimation of the total

number of video requests at peak-time in the system (that will

be introduced next).

D. Estimation of the total number of video requests at peak-

time

Recall that we focus on the policy charging the VoD service

provider by the peak-time CDN bandwidth consumption (or

95th percentile), which is dependent on, Nc, the number

of video requests directly sent to the CDN. Let p̂tp denote

the total number of video requests at peak-time, let ρ de-

note the proportion of video requests that can be satisfied

by downloading from seeds in the P2P network, and thus

Nc = p̂tp(1 − ρ). The value of ρ can be easily obtained

by having an averaged value over the statistics during the



previous couple of days. Next, we introduce how to estimate

p̂tpusing the LSTM model.

By the summation of the number of requests to all individ-

ual videos, we have

p̂tp =
∑

v∈V

p̄v,tp (6)

We periodically collect the total number of video requests

in the system, and convert the prediction problem to a time

series problem, which we can use LSTM again to solve rather

than using FNN. The structure of the LSTM in this case, as

shown in Fig. 7, is similar to the one used in predicting the

uploading capability levels of clients.

Let p̂t denote estimated total number of video requests

during time period t. Let p̂′t denote real total number of video

requests during time period t, which can be obtained from

the dataset. Then p̂t can be estimated through the LSTM

network with the real total numbers of video requests during

the previous time periods (t− tL), . . ., (t− 1), i.e.,

p̂t = LSTM(p̂′t−tL
, . . . , p̂′t−1; θLSTM ), (7)

where tL is the number of previous time periods used for the

estimation. We could put the estimated value p̂t back to the

tail of the time series as the input of the LSTM network, and

then p̂t+1 can be calculated. By parity of reasoning, we could

predict the total number of video requests for the following

days. The model takes the total number of video requests

everyday in the previous three months as training data, the

length of which is denoted by Tl.

VI. EVALUATION

Datasets. We collect the proprietary data on servers of the

commercial system from 1st March, 2017 to 30th June, 2017.

The data records the snapshot of the number of video requests,

and replicas in the P2P network of a set of videos every five

minutes. Besides, the video requests from the clients and their

uploading and downloading rates are also recorded. About

2,000,000 videos are involved, and we have access to the

semantic and contextual information of them.

Implementation. We use a 6-hidden-layers FNN with 250

hidden nodes in each layer to predict the number of requests

to each video during peak-time. Besides, we set half an hour

as a time period, i.e., 48 time periods per day, and we use the

uploading rate of a client in the previous 48 time periods to

predict the uploading capability level in the next time period.

Similarly, the total number of video requests is predicted

based on the data in previous 48 time periods. The LSTM

models are both set to have two layers. We find that using

more hidden nodes or more layers will not further improve

the performance of the models. We use the 10-fold cross-

validation [18] for training the models.

Proactive-Push is deployed over the video push server of

the commercial system. We use the data from 2nd June, 2017

to 29th June, 2017 to train the FNN model, which does not

contain any national holidays that may cause interference

to our observations. To predict the daily pattern, every half

hour we set up a prediction model based on the training data

collected in the previous hour. There are about 200 thousand

records for each model, and in total we need to set up 48

models for a daily prediction model (one model every half

hour, and 24 hours a day).

We modify the ways of generating the scarce video list and

responding to the video request from clients. For every half

hour, the server collects the system statistics of the previous

hour, predicts the seed scarcity of videos, and decides the

number of needed seeds. The server ranks all videos that

suffer from the seed scarcity problem, and prioritizes videos

by the number of needed seeds. The server responds to a

client’s request by recommending the top videos in the scarce

video list, as described in Section V-C. The format of the

scarce video list is consistent with the existing format to keep

the backward compatibility to the existing system.

The network flow model. Usually, the amount of data

through P2P streaming flow between a seed and a client is not

recorded in any real-world system due to the extremely high

cost of doing so. The aggregate rate of uploading/downloading

to and from every client is known, but the exact rate of the

flow on each link between two clients is unknown. Hence,

we refer to the network flow model [23] to emulate the P2P

streaming over links between a seed and a client, and the

calculation of proportion of P2P streaming can be transformed

to a max-flow problem.

A. Precision of predicting the peak-time number of requests

to individual videos

The accuracy of the prediction on the peak-time number

of requests to individual videos would determine whether the

appropriate number of replicas should be pushed to the P2P

network. We use the data of one month length to train the

FNN model and test over the next one-week data. In other

words, the experiments run throughout the dataset, and the

parameters get updated by every week of data. Besides, we

only focus the videos with more than 40 concurrent requests

in this experiment.

We first examine the appropriate length of time period for

observing the contextual features that will be put into the

FNN network. The length is set as 0.5 hour, 1 hour, 1.5

hours, or 2 hours, and the precisions are plotted in Fig. 8.

Apparently, the prediction with 0.5 hour data may miss some

critical information and therefore performs a lower precision.

Meanwhile, when the length becomes more than one hour,

then the precision would not get an evident increment. Hence,

we fix the length of time period for observing contextual

features as one hour for saving the storage and accelerating

the computation.

Then we inspect the precision of the FNN model with

semantic and contextual features. We compare it to the

supported vector regression (SVR) and linear regression (LR)

models with the same input data, while the FNN with only

contextual features is also compared. The models are tuned

by 10 fold cross validation on the training set to reach good

performances. Besides, the original push strategy serves as



Fig. 8: The impact of differ-

ent lengths of data on pre-

dicting the peak-time num-

ber of requests to individual

videos.

Fig. 9: The precision on pre-

dicting the peak-time num-

ber of requests to individual

videos, under different pre-

diction models.

Fig. 10: The precision on pre-

dicting the uploading capa-

bility level of clients.

Fig. 11: The ROC on

predicting the uploading

capability level of clients.

baseline. Results in Fig. 9 show that our FNN model in

Proactive-Push outperforms other methods, and the use of

semantic features does help contributing to the prediction on

the peak-time number of requests to individual videos.

B. Precision of predicting the uploading capability level of

clients

Similarly, we use the data of one month length to train the

LSTM model and test on the next one-week data. Here, we

focus on the precision of correctly predicting the uploading

capability level, and compare the LSTM model with supported

vector machine (SVM) and Decision Tree (DT). We use

the latest reported uploading rate as the baseline approach.

As illustrated in Fig. 10, the LSTM model increases the

overall precision by about 27% compared with the baseline

strategy. Besides, the LSTM model produces a similar and

high precision on all five levels of the uploading capability.

The ROC curve is shown in Fig. 11, which implies that the

LSTM model could provide an accurate prediction on the

uploading capability of clients.

C. Error rate in estimating the total number of video requests

at peak-time

Regarding the estimation of the total number of video

requests at peak-time, we compare four models: the LSTM

model using the data from the past few hours, the LSTM

model using the peak value of the previous days, LR and

ARMA using the data from the past few hours. Fig. 12

exposes error rate in the estimation, where a positive (or

negative) error rate implies that the algorithm estimates more

(or less) than the real total number of video requests at

peak-time. Results indicate that using total number of video

requests at peak-time of previous days could generating the

highest error rate, while our LSTM model using data from

previous hours outperforms others, with a high precision of

over 97%.

D. Saving CDN bandwidth consumption

We collect the data from 2nd, June, 2017 to 29th, June,

2017 to observe the performance of three video push mech-

anisms in saving the CDN bandwidth consumption, namely

the original video push mechanism, Proactive-Push, and the

oracle or ideal strategy (which generates the scarce video list

based on the ground-truth of the P2P network information and

the uploading capability of every client during peak-time).

The pushing target ι is set as 20, same as the value used in

the commercial system.

We monitor the proportion of direct download from CDN

edge servers of the 95th percentile of every day, and plot the

histogram by week in Fig. 13. Our proposed Proactive-Push

mechanism can further reduce the proportion download from

CDN by 21%, which makes a great step improvement towards

the oracle push strategy.

Aiming at examining the real performance of our proposed

strategy, we implement a pilot deployment on one of the

trackers in the real commercial VoD system. Meanwhile,

another tracker implementing the original push strategy is

taken as comparison. The experiments were executed from

1st July, 2017 to 14th July, 2017, and the CDN bandwidth

cost is shown in Fig. 14. Note that the cost (i.e., the values of

the y-axis in the figure) is scaled for hiding the real value and

protecting the privacy of the commercial system. On average,

the proposed strategy reduces the CDN bandwidth cost by

18% compared with the original video push strategy.

E. Setting the pushing target parameter ι

In our experiments and the real-world deployment, the

pushing target ι = 20. Here, we test the impact of this

pushing target parameter. We demonstrate the proportion of

direct download from CDN in Fig. 15, varying ι from 1 to

30 using the data from 2nd, June, 2017 to 29th, June, 2017.

It is clear that the proportion of direct download from CDN

becomes stable when ι = 20, but it rises sharply when ι is

greater or smaller.

VII. CONCLUSION

As more and more people prefer watching videos through

Internet, the last-mile delivery cost for transmitting video

segments from CDN servers to clients keeps increasing. One

prevailing solution for cutting the expenses on CDN in Asia

is to offload the transmission to edge devices and implement a

hybrid CDN-P2P VoD system, where a video push mechanism



Fig. 12: The error rate on es-

timating the total number of

video requests in the system.

Fig. 13: The proportion of

direct download from CDN.

Fig. 14: The average CDN

bandwidth cost.

Fig. 15: The sensitivity of

pushing target ι.

is proposed by leveraging the free bandwidth during off-peak

hours and the vacant clients. In this paper, we analyze the

patterns of the number of video requests and the uploading

rate of clients in a day according to traces of a real commercial

VoD system. Then we utilize neural network models to predict

the number of requests of individual videos during peak

hours, the uploading capability level of clients, and the total

number of video requests during peak hours. Based on the

three prediction models, we propose a novel video push

mechanism named Proactive-push. Emulations on real traces

show that our proposed strategy can further reduce 21% of

the proportion of direct download from CDN compared with

the original video push strategy. Our pilot deployment over

iQIYI shows that Proactive-push can save 18% more cost on

the CDN servers at peak time.
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