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Abstract—Modern planetary-scale online services have massive
data to transfer over the wide area network (WAN). Due to
the tremendous cost of building WANs and the stringent timing
requirement of distributed applications, it is critical for network
operators to make efficient use of network resources to opti-
mize data transfers. By leveraging software-defined networking
(SDN) and reconfigurable optical devices, recent solutions design
centralized systems to jointly control the network layer and
the optical layer. While these solutions show it is promising
to significantly reduce data transfer times by centralized cross-
layer control, they do not have any theoretical guarantees on the
proposed algorithms. This paper presents approximation algo-
rithms and theoretical analysis for the online transfer scheduling
problem over optical WANs. The goal of the scheduling problem
is to minimize the makespan (the time to finish all transfers)
or the total sum of completion times. We design and analyze
various greedy, online scheduling algorithms that can achieve 3-
competitive ratio for makespan, 2-competitive ratio for minimum
sum completion time for jobs of unit size, and 3α-competitive
ratio for jobs of arbitrary transfer size and each node having
degree constraint d, where α = 1 when d = 1 and α = 1.86 when
d ≥ 2. We also evaluated the performance of these algorithms
and compared the performance with prior heuristics.

I. INTRODUCTION

Modern plenary-scale services, such as search, social net-
working and e-commerce, have massive amounts of data to
transfer over the wide area network (WAN). The quality of
these services heavily depend on how fast data can be delivered
to destinations. On the other hand, it is extremely expensive to
build and maintain WANs. Therefore, it is critical for network
operators to make the most efficient use of WAN bandwidth,
in order to accommodate as much traffic as possible and finish
data transfers as quickly as possible.

Traditional traffic management solutions suffer from inef-
ficiencies of distributed protocols that run in the network.
Routers do not have a global view of network topology and
traffic demand, and cannot make good network-wide rout-
ing decisions. Advancements in software-defined networking
(SDN) enable network operators to build centralized control
systems. These systems can obtain global topology and traffic
information, and configure all routers in the network in a
centralized manner. For example, Google B4 [15] and Mi-
crosoft SWAN [14] show that such centralized control can
significantly improve network utilization.

For optical networks, today’s optical technologies allow
dynamic reconfiguration of optical devices, similar to router

reconfiguration in SDN. In a modern WAN, routers are not
directly connected by point-to-point links. There is an optical
layer under the network layer, which consists of optical de-
vices, such as Reconfigurable Optical Add-Drop Multiplexers
(ROADMs), and fibers. Routers are connected to the optical
devices; a link between two routers in the network layer
is actually an optical circuit that traverses multiple optical
devices in the optical layer. By reconfiguring the optical
devices in the optical layer, we are able to change how the
routers are connected in the network layer, i.e., the network-
layer topology. In this way, we can not only change routing by
reconfiguring routers, but also change network-layer topology
by reconfiguring optical devices. The constraints in such
reconfiguration are fixed upper bounds on the degree of each
node of the network, i.e., the maximum number of optical
links incident to each node. This is because each router has
a limited number of router ports (e.g., 64 ports), which limits
the number of links a router can have. Recent work such
as Owan [16] shows that we can dramatically improve data
transfers by jointly controlling the network routers and optical
devices. However, the solution in Owan [16] used heuristic
algorithms for scheduling and reconfiguration of the optical
devices, which do not provide any mathematical analysis or
theoretical guarantees.

This paper presents approximation algorithms and theoreti-
cal analysis on the data transfer problem on the WAN. Similar
to previous work such as Owan, we assume a centralized
controller that can dynamically reconfigure both the network
routers in the network layer and the optical devices in the
optical layer. We have a stream of transfer requests arriving at
the system, where each request has a source, a destination, a
transfer size, and a release time (the earliest time by which the
transfer can start). We need to design a scheduling algorithm
that decides, at each time slot, which jobs to transfer and which
links to schedule. All these decisions need to respect the degree
bounds from the optical layer. The goal of the optimization
problem is to minimize the makespan (the total time to finish
all the transfers) or the total sum of completion time. The
problem has an offline version and an online version. In the
offline version, the system knows all the transfer requests
ahead of the time; in the online version, the system only
receives the transfer requests as they show up at their release
time. We are mainly interested in the online setting though we



also prove approximation ratios for the offline setting.
In the previous work [16] a variety of heuristic algorithms

have been adopted such as Shortest Job First, Earliest Deadline
First (when deadlines are enforced), as well as more sophis-
ticated heuristics using simulated annealing. In this paper our
goal is to provide algorithms with theoretical guarantees yet
we also wish to use algorithms that are simple and practical
to implement. The algorithms we design are the following, all
with a greedy nature and easy to implement.
• Greedy Scheduling: Take the currently available jobs in

any arbitrary order and schedule a job whenever the
degree constraint is not violated at its source and des-
tination. We prove this simple algorithm is 3-competitive
in the online setting for minimizing makespan.

Further, for minimizing the sum of completion time,
this algorithm gives a 2-approximation if all jobs arrive
at time 0 and have unit size; and is 3-competitive when
jobs have unit size and arrive in an online manner.

• Perfect Matching based Scheduling: If the optical links
is directional (i.e., a link from i to j is only for data
transfer from i to j but not in the other direction), one
can formulate the problem as scheduling in a bipartite
graph. In this case we can schedule the requests by
choosing a perfect matching from the current set of jobs,
which always reduce the ‘heaviest bottleneck’ in the
requests. We prove that this algorithm is 2-competitive
for minimizing makespan.

• Smith’s Greedy Scheduling: When the jobs have varying
size and when we optimize for the sum of completion
time, we augment the simple greedy algorithm by first
sorting the jobs in non-decreasing size. When the jobs
all arrive at time 0, this algorithm is 2-competitive.

• SRPT-based Greedy Scheduling: In the most general
setting, when jobs have varying size and may arrive
in an online manner, we propose to use the Shortest
Remaining Processing Time (SRPT) to sort the jobs and
propose a new greedy algorithm that is 3α-competitive
for minimizing the sum of completion time, where α = 1
when d = 1 and α = 1.86 when d ≥ 2..

In addition, we also show in a variety of lower bounds on the
competitive ratios for both offline and online settings.

To summarize, this paper provides the first theoretical
analysis of the data transfer problem in a reconfigurable optical
WAN. This problem, as shown in the next section, is related
to a variety of scheduling problems in the literature yet is
distinctly different due to the online nature and the maximum
degree constraints. We complement the theoretical analysis by
providing an extensive set of simulation results that evaluate
the performance of these algorithms.

II. RELATED WORK

SDN Traffic Engineering. SDN decouples the control plane
from the data plane. Network operators can leverage SDN
to build centralized control systems that overcome many
drawbacks of traditional distributed solutions. Several SDN-
based systems have been designed, implemented, and deployed

in recent years that can improve network throughput [14], [15],
allocate capacity based on service priority and the incremental
value of additional allocation [18], tolerate data plane and
control plane failures [20], enforce policy-based routing [13],
and jointly manage routers, proxies, load balancers, and DNS
servers [21]. Besides these, there is a growing interest to
go beyond network-level objectives such as network through-
put and focus on fine-grained transfer-level objectives such
as transfer completion time. Recent solutions have shown
that by leveraging SDN we can significantly reduce transfer
completion time [5], [17], [19], [24], [27]. Owan goes even
another layer down the stack to the optical layer, and shows
how to jointly control network routers and optical devices to
reduce transfer completion time [16]. However, as we have
pointed out, Owan does not have any mathematical analysis
and theoretical guarantees on the proposed algorithms.

Scheduling Algorithms. Scheduling is a well-studied class of
problems. The scheduling problem with a set of dependent
jobs on identical machines is known to be NP-hard even
when the jobs have unit length [3]. Most of the works in
literature have considered the problem where jobs are inde-
pendent of each other. Both the preemptive/non-preemptive
and offline/online versions on single/multi machines have been
extensively studied.

There is a family of scheduling problems called scheduling
with conflicts (called non-clairvoyant scheduling) [23], in
which jobs could be in conflict with each other and no two
jobs in conflict can be scheduled at the same time. One
special case is the online graph coloring problem, we are
asked to color the vertices such that no two adjacent vertices
are given the same color. The vertices are revealed over time
and we are asked to color them when they show up. In our
problem, two jobs that share the same source or destination
are also in conflict and cannot be scheduled at the same time.
Our problem studies a special case of this problem, where
the conflicts are determined by the source/destination of the
jobs and instead of arbitrary. This makes many of the results
for ‘scheduling with conflicts’ (especially the lower bounds)
inapplicable in our setting.

The relationship between chromatic sum problem and the
scheduling problem with the objective of minimizing average
completion time has been explained thoroughly in [12], [22].
We refer the readers to Gandhi et al.([9]) for a summary
of the results on the offline version both with or without
preemptivenes, and Even et al.([8]) for minimizing makespan.
More specific results for different constraints on the graph and
jobs lengths could be found in [10], [1], [4]. In short, offline
problems were well studied but no much has been done for
the online problem.

III. PROBLEM STATEMENT

Given a set of nodes V , in which each node represents a
site on the WAN, we compute network-layer topology and
transfer schedules to optimize data delivery. Each node vj has
a maximum degree dj (the number of router ports). A data



transfer request is denoted by the tuple (ui, vi, `i, ri), in which
the request i has source ui, destination vi, size `i and release
time ri. Without loss of generality, we assume that all links
have unit capacity and all job sizes are integers, as we may
always adjust the scale of a time slot. We assume that all
transfers are scheduled by single-hop paths from source to
destination. The challenge is to decide which edges to use
(with respect to the degree constraints) and which set of data
transfers to schedule on these edges. Specifically, we have the
following two problems with different optimization objectives.

Problem 1 (Minimum Makespan). Schedule the transfers
such that the maximum completion time of all transfers is
minimized.

Problem 2 (Minimum Sum Completion Time). Schedule
the transfers such that the sum of the completion time of all
transfers is minimized.

For each problems, we focus on the online version in which
transfer requests can arrive at different time slots. We aim for
competitive algorithms of which performance is compared to
the optimal offline version.

We model the transfer requests as a (multi-)graph H
on the nodes V , in which each edge represents a request
(ui, vi, `i, ri). H is called the transfer request graph. The
optical links are generally bidirectional. But we sometimes
consider the special case when the links are directional. An
undirected link, once placed, may be used both ways to
transfer data. And the degree bound di for node i is the
total number of undirected links incident to a node. In the
directional setting, each link from i to j is only for data
transfer from i to j, not in the opposite direction. One may
formulate a bipartite graph — each node i corresponds to two
nodes i and i′ with i ∈ V and i′ ∈ V ′. Similarly we can define
a (multi-) bipartite graph H on V × V ′ in which each edge
represents a job request and the degree bound di applies for
the maximum possible outgoing degree for nodes in V and
maximum incoming degree for nodes in V ′. Sometimes we
can obtain better approximation results in this special case.

IV. MINIMIZING MAKESPAN

In this section, we focus on the objective of makespan. First,
we consider the general case where the links are undirectional,
the degree di of nodes in V could be different for different
nodes and jobs could have different sizes. Next, we present
results (with better approximation factor) for the special case
where the links are directional (i.e., in a bipartite graph) and
all nodes have the same degree constraints.

A. Algorithms and Upper Bounds

In the offline setting (when all jobs are available at time
zero), the best approximation is 2 (by a greedy algorithm) and
a lower bound of 4/3 is shown in [7]. Here we study the
online version.

a) Upper Bound for Online Non-Preemptive Setting:

Definition 4.1 (Greedy Scheduling). At any time slot t we
have a collection of available jobs represented by edges in
G(t). We go through this list of jobs in any arbitrary order and
schedule the jobs if the degree constraints are not violated.

Theorem 4.2. The greedy algorithm is 3-competitive.

Proof: For each job j from u to v we denote by rj its arrival
time or release time, Tj the time when it is scheduled in the
greedy algorithm, and T ∗j when it is scheduled in the optimal
offline algorithm. We also denote by T the makespan of our
algorithm and T ∗ the makespan of the optimal offline solution.
Obviously T ∗ ≥ T ∗j ≥ rj + `j .

By the greedy nature of the algorithm, for all the time slots
after rj (the release time of job j with source u and destination
v), either all ports at u were used up (for jobs in set N(u))
or all ports at node v are used up (for jobs in set N(v)).
Now we may upper bound the finishing time for job j to be
Tj ≤ rj +

∑
i∈N(u) `i/du +

∑
i∈N(v) `i/dv + `j

On the other hand, we know that job j and the jobs in N(u)
share the same vertex u and thus the optimal solution has
to use at least (

∑
i∈N(u) `i + `j)/du slots to schedule them.

This means T ∗ ≥ (
∑
i∈N(u) `i + `j)/du. Similarly, T ∗ ≥

(
∑
i∈N(v) `i + `j)/dv . Put together we know Tj ≤ 3T ∗ for

any j. This means the algorithm is 3-competitive. �

b) Special Case: Bipartite Graph: Here we assume that
the job request graph H of nodes is a bipartite graph in which
transfer jobs are from vertices in V to vertices in V ′. Here we
show that one can use a different algorithm for the bipartite
graph when di = d for all i and all jobs have size of 1 (the
capacity of a link).

Definition 4.3 (Perfect Matching Scheduling). At any time
slot t we have a collection of available jobs represented by
edges in a bipartite graph H(t). We first add dummy edges to
transform H into a k-regular graph. Any regular bipartite graph
has a perfect matching. Remove this perfect matching and we
obtain a (k − 1)-regular graph. We iterate and obtain d perfect
matchings for the next slot.

This above algorithm is optimal when all jobs are available
at time 0 and is 2-competitive in general.

If the largest degree in the transfer request graph H is
k, we would need at least dk/de time slots to schedule all
transfers by any algorithm. In the offline setting, the k perfect
matchings are put into dk/de groups. Each group with at most
d matchings. The ith group is scheduled in the ith time slot.
Thus all requests are done in dk/de slots.

When jobs arrive in an online manner, at any time t we
use the above idea to select a perfect matching (again dummy
edges are added to make the graph regular). We now argue
that this algorithm is 2-competitive.

To see that, suppose the last arriving jobs (i.e., the highest
release time) arrive at time t. Also suppose at time t the job
request graph (not including the jobs that arrive at time t)
is H∗(t) if we have used the optimal (offline) algorithm and



H(t) if we have used the perfect matching algorithm. A node
u in H∗(t) has degree deg∗(u) and in H(t) has degree deg(u).
Clearly we have deg(u) ≤ deg∗(u) + td – in the worst case
our algorithm does not schedule any jobs incident to u while
the optimal algorithm always schedule d job at u at every one
of the t slots since time 0.

Further, the newly arriving jobs at time t have degree d′(u)
for node u. Thus the makespan of the optimal algorithm T ∗

will be T ∗ ≥ t + [deg∗(u) + d′(u)]/d. For our algorithm
we know that perfect matching is optimal after time t. Thus
our algorithm can finish in time T ≤ t + maxu[deg(u) +
d′(u)]/d ≤ 2t+maxu[deg

∗(u) + d′(u)]/d ≤ 2T ∗.
Summarizing the above, we have

Theorem 4.4. For a bipartite request graph H in which all
nodes have degree bounds d, the perfect matching based
scheduling algorithm is optimal when the jobs are available at
time 0, and is 2-competitive in the online setting.

B. Lower Bound

We present lower bound examples on the greedy scheduling
and perfect matching based scheduling in both the offline
and online settings. In our examples the requests are repre-
sented by a bipartite graph where jobs have sources in V
and destinations in V ′. We denote V = {s1, s2, · · · , sn},
V ′ = {s′1, s′2, · · · , s′n}. All nodes have the same degree
constraint of d = 1. Each edge represents a job size 1. Figure 1
(i) and 1(ii) show that greedy scheduling and perfect matching
based scheduling can be a factor 2 off from the optimal
algorithm in the online setting, for minimizing makespan. This
shows that our analysis of the perfect matching algorithm in
Theorem 4.4 is tight.

When all jobs are available at time zero, Figure 1 (iii) shows
that greedy scheduling can be a factor 1.5 off from the optimal.

V. MINIMIZING SUM COMPLETION TIME

Now we study the problem of minimizing the sum comple-
tion time. This section is partitioned into parts, focusing on
different variants.
(A) Jobs have unit size and release time is zero.
(B) Jobs have unit size and arbitrary release time.
(C) Jobs can have arbitrary size but release time is zero.
(D) Jobs can have arbitrary size and release time.

We analyze three different greedy algorithms. The simple
greedy algorithm in Definition 4.1 is 2-competitive for (A)
and is 3-competitive for (B). For (C) and (D) we propose
two slightly different greedy algorithms that both achieve
competitive ratio of 2, but the analysis for (D) only holds
when all degree constraints are 1.

Throughout the section we use dv as the degree constraint of
v, while deg(v) as the number of edges/jobs requests incident
to v in job request graph H .

A. Jobs of Unit Size and Release Time Zero

We will show that greedy algorithm in Definition 4.1 gives
a 2-approximation for scenario (A) with arbitrary degree

constraints du. When all the degree constraints du = 1, this
is in fact exactly the edge chromatic sum problem.

Definition 5.1 (Minimum Edge Chromatic Sum Problem).
Given a multi-graph H , partition its edges into matchings
{Mt}, such that

∑
t t · |Mt| is minimized.

The edges in the matching Mt are colored t, with a cost
of t. In scheduling, this means that we schedule Mt in the
t-th time slot and all the jobs in Mt have completion time of
t. A related problem is the minimum vertex chromatic sum
problem:

Definition 5.2 (Minimum Vertex Chromatic Sum Problem).
Given a graph G, partition its vertices into independent sets
{It}, such that

∑
t t · |It| is minimized.

For a graph H , define its line graph L(H) as following:
every edge e of H corresponds to a vertex ve of L(H), add an
edge between ve and ve′ if e, e′ share a common vertex in H .
Clearly for any graph H , the edge chromatic sum problem is
equivalent to the vertex chromatic sum problem in G = L(H).

Given an edge/vertex coloring scheme, we say it is compact,
if it is locally optimal, i.e. we can not move any edge/vertex
to an matching/independent set with smaller index to be a
feasible coloring.

The Minimum Edge Chromatic Sum problem is NP-hard,
even when H is a bipartite graph [11]. But any compact edge-
coloring is a 2-approximation [2]. In this work, we will show
that the same approximation ratio can be obtained when the
degree constraints dv are arbitrary.

Let H be a job request graph and G be the line graph of
H . Let OPT be the optimum for the minimum sum com-
pletion time problem for version (A) with degree constraints
{du}u∈V (H). First we have a lower bound for OPT .

Lemma 5.3 (Lower Bounds on OPT). OPT ≥ 1
2 (n +

1
2

∑
u∈V (H) deg(u)

2/du), where n = |V (G)| and deg(u) is
the degree of u in H .

Proof: First we define the clique labelling problem as follows:
given a complete graph Q with q nodes, and an integer d, we
wish to color the nodes of Q such that each color is used at
most d times, and minimize the total cost, assuming color i
has cost i. We denote the optimum as CL(Q). Clearly, we
will have d vertices of color 1, another d vertices of color 2
until we finish with all vertices. That is, CL(Q) =

∑bq/dc
j=1 j ·

d+ (q − dbq/dc)(d+ 1) ≥ (q + q2/d)/2.
On the other hand, observe that each vertex u in H corre-

sponds to a clique Qu in G, containing vertices corresponding
to edges incident to u in H . Any edge coloring of H – in
particular, the optimal edge coloring of H – can be extended to
a valid clique labeling for the cliques {Qu}: the vertex in Qu
carries the color of its corresponding edge in H; by definition
of edge coloring at most du edges incident to vertex u can
have the same color. Note that each edge appears in exactly
two cliques, so OPT ≥ 1

2

∑
u∈V (H) CL(Qu),
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Fig. 1. (i): The lower bound for greedy scheduling algorithm in the online setting. Every node in V except node 1 is connected to all the nodes in V ′.
For node s1, there is a single request (s1, s′1). At time i there is a request (s1, s′i+1). The optimal solution is shown in the second line, in which we can
schedule n jobs in each slot and the completion time is n. While greedy scheduling (in the worst case) could have a situation such that all requests from s1
are in conflict with other requests from time 0 to n − 2. Thereafter, at time n− 1, we are left with n jobs from source s1 which requires another n slots.
The completion time is 2n − 1. Thus the greedy algorithm can be a factor 2 − 1

n
off from the optimal. (ii): The lower bound for perfect matching based

scheduling algorithm in the online setting. The requests at time 0 include all the edges except the set {(sj , s′(j+1) mod n
)|2 ≤ j ≤ n}. For the time i

(1 ≤ i ≤ n− 1), there is a request (si, s′(i+1) mod n
). In the optimal solution, we may schedule a perfect matching in each slot j = 0, 1, · · · , n− 1 as

shown in the figure, which does not use any edges in the edge set M = {(sj , s′(j+1) mod n
)|1 ≤ j ≤ n} and at time n − 1 finish M . The completion

time is n. For perfect matching based algorithm, for time slot i from 0 to n− 1, we may only end up scheduling (si+1, s
′
(i+2) mod n

) in the worst case.
At time n each node in V has degree of n− 1. Therefore, the completion time is 2n− 1. (iii): The lower bound for greedy algorithm in the offline setting.
For the optimal solution, two slots are used to deliver the requests; for greedy matching, three slots were used. This pattern can be repeated to show that the
greedy matching can be as bad as 1.5 times the optimal makespan.

Recall that CL(Qu) ≥ 1
2 (deg(u) + deg(u)2/du). Hence,

OPT ≥ 1
4

∑
u∈V (H)(deg(u) + deg(u)2/du) = 1

2 (n +
1
2

∑
u∈V (H) deg(u)

2/du) as desired. �

Lemma 5.4 (Upper Bound). The total cost of the greedy al-
gorithm is at most n+ 1

2

∑
u∈V (H) deg(u)(deg(u)− 1)/du.

Proof: By the definition of the greedy algorithm, when we
assign color t to a job/edge j = (u, v) in H , job j cannot be
colored by a smaller color, i.e., in each of the slots τ ≤ t− 1,
either du jobs incident to u are scheduled at time slot τ , or
dv jobs incident to v are scheduled at time slot τ . In the first
case, we charge 1/du unit to each of those du edges. In the
second case, we charge 1/dv unit to each of the dv edges. We
also charge 1 unit on edge j itself. Clearly, the total amount
of charge is exactly the cost of our greedy coloring.

Now we count the total charge in a different way. First all
edges in H are charged 1 unit each. So this part of charge is
n = |V (G)|. Now we look at the fractional charges.

The charge on an edge j = (u, v) ∈ H is at most 1/du by
each edge incident to u with colors higher than j’s color and
1/dv unit by each edge incident to v with colors higher than
j’s color. Now if we just look at node u and its deg(u) edges
incident to u in H . We can rank them by their color from
highest to lowest. Each color in this neighborhood will charge
to 1/du to all the lower colors. The total charge collected on
all these deg(u) edges in the neighborhood of u becomes at
most

∑deg(u)−1
i=1 i/du = 1

2 deg(u)(deg(u)− 1)/du. Summing
up over all vertices of H we are done. �

Theorem 5.5. The greedy scheduling algorithm is a 2-
approximation of problem (A) with arbitrary degree constraints.

B. Jobs of Unit Size and Arbitrary Release Time

We will show that the same greedy algorithm in Defini-
tion 4.1 gives a 3-approximation for problem version (B). For
simplicity, we will assume du = 1 for all u ∈ V (H), but this
result applies to general degree constraints.

Again consider the request graph H and its line graph G.
Denote by r(v) the release time of a vertex v in G and x(v)
the time slot scheduled for job v. The schedule of the requests
can be modeled as using color x(v) for v such that x(v) ≥
r(v) for any vertex v and x(v) 6= x(w) if u,w are neighbors.
Therefore, a job is an edge in H and a vertex in G. Its color
is the time slot this job is scheduled for.

The greedy algorithm in Definition 4.1 is an online algo-
rithm and gives a schedule/coloring scheme that is compact,
i.e., no job can be moved to an earlier slot. We now upper
bound the chromatic sum (i.e., sum of completion time).

Lemma 5.6. Given G with n vertices and m edges, any com-
pact vertex coloring χ satisfies |χ| ≤ m +

∑
v r(v), where |χ|

is the vertex chromatic sum and r(v) is the release time of v.

Proof: Consider the following auxiliary graph G′: for each
v, add r(v)− 1 extra dummy nodes as well as dummy edges
among them to form a clique of size r(v). See Figure 2. The
edges in G′ can be classified into three types: Type 1 includes
the edges in the original graph G; Type 2 are the edges incident
to exactly one dummy node; Type 3 are the edges incident to
two dummy nodes. Denote by Ei the set of type i edges.

Any compact coloring of G with the release time can be
completed as a compact coloring of G′ – we simply give color
1, 2, · · · , r(v)− 1 for the r(v)− 1 dummy nodes adjacent to
v. Now we use a charging scheme. When we color a node
v with color j, there must be j − 1 neighbors of it, each



Fig. 2. An example of the dummy nodes/edges. The squares are the vertices
in G with release time 4, 5, 3, 5 respectively.

colored 1, 2, ..., j − 1 respectively. Charge 1 unit to each of
these j − 1 edges, and charge 1 unit to v itself. Note that
only type 1 and type 2 edges may be charged. Hence, at the
end of the algorithm, each node is charged exactly 1, and
each type 1 and type 2 edge is charged at most 1. So the
total charge is at most |E1| + |E2| + n. Since |E1| = m and
|E2| =

∑
v[r(v)− 1] =

∑
v r(v)− n, we are done. �

Lemma 5.7. Let G = (V,E) be a line graph, in which each
vertex v has release time r(v). Then the chromatic sum of a
feasible coloring of G is no smaller than 1

2λ(m+ 2n) + 1
2 (1−

λ)
∑
r(v) for any λ ∈ [0, 1], where n = |V | and m = |E|.

Proof: We make use of the property of line graph that it
can be partitioned into cliques Q1, ..., Qk, s.t. each node is
contained in at most two cliques, and each edge is contained
in exactly one clique.

Now we consider the optimal clique labeling CL(Qi) of
each clique Qi. We have two natural lower bounds of CL(Qi):

• CL(Qi) ≥
(
qi+1
2

)
, where qi = |Qi|;

• CL(Qi) ≥
∑
v∈Qi r(v).

There the linear combination of the two lower bounds is still a
lower bound. CL(Qi) ≥ λ

(
qi+1
2

)
+(1−λ)

∑
v∈Qi r(v), where

0 ≤ λ ≤ 1. Summing over all cliques, we obtain

CL(G) ≥ (1− λ)
∑k
i=1

∑
v∈Qi r(v) + λ

∑k
i=1

(
qi+1
2

)
= λ(m+ 2n) + 2(1− λ)

∑
v∈V r(v)

On the other hand, any feasible coloring of G can be turned
into a clique labeling such that the label of each vertex is
exactly its color. Since each vertex belongs to at most two
cliques. The chromatic sum of the optimal coloring solution
is at least as big as CL(G)/2, since CL(G) is the optimal
clique labeling. �

Theorem 5.8. The chromatic sum of any compact coloring is
a 3-approximation to problem (B).

Proof: Denote r =
∑
r(v). By Lemma 5.6 and 5.7

|χ|
OPT

≤ 2
m+ n+ r

λ(m+ 2n) + 2(1− λ)r
< 2

1

λ 1
1+α + (1− λ) 2

1+ 1
α

,

where α = r
m+2n .

If α ≤ 1/2, we take λ = 1 and then |χ| ≤ 2(1 + α)OPT.
If α > 1/2, we choose λ = 0 and then |χ| ≤ (1 + 1

α )OPT.
Either way the approximation ratio is no greater than 3. �

C. Jobs of Arbitrary Size and Release Time Zero

We use a specific greedy algorithm called the Smith’s
Greedy because its intuition comes from the well-known
Smith’s Rule in single machine scheduling problem [26].

Definition 5.9 (Smith’s Greedy Algorithm). We sort the
jobs in non-decreasing size and schedule the jobs in a greedy
manner with respect to the degree constraints. We allow
preemptiveness.

We will show that Smith’s Greedy algorithm gives a 2-
approximation on the sum completion time for problem (C).
Denote by J the set of all jobs. We first sort and relabel
all jobs/edges so that {lj} is non-decreasing. Consider a job
j incident to a node u (which could be either a source or
a destination), let rank+u (j) (rank−u (j)) be the rank of j’s
completion time among all jobs incident to u, in increasing
(decreasing) order.

Lemma 5.10. The sum of completion time of the Smith’s
greedy algorithm is at most∑

j∈J
(rank−src(j)(j) + rank−des(j)(j)− 1) · `j .

Proof: Let G be the line graph of H . Build an auxiliary graph
G′ as follows: associate each node j in G with a clique Qj of
size lj in G′; If (i, j) ∈ E(G), add edges in G′ between every
pair of nodes (x, y) where x ∈ Qi and y ∈ Qj . Consider the
following charging scheme: when we color node j in G with
color c, we first pick an arbitrary node u in Qj and charge 1
to it. Then, since colors 1, 2, ..., c− 1 are already occupied in
u’s neighborhood in G, say by nodes z1, ..., zc−1, we charge 1
for each edge (u, zk). If zi is not in Qj (i.e. in another clique
Qr), then we call it type I charge of j, otherwise call it type
II. Then the total charge of type I for j is at most∑

i∼src(j),i<j

li +
∑

k∼des(j),k<j

lk.

Summing over j, the total type I charge is at most∑
j

[
∑

i∼src(j),i<j

li +
∑

k∼des(j),k<j

lk]

≤
∑
j

[(rank−src(j)−1) + (rank−des(j)−1)]lj .

The inequality is true because each term lj appears
(rank−src(j)−1) + (rank−des(j)−1)] times in the summation.

On the other hand, it is clear that the type II charge on each
j is `j , hence the total type II charge is

∑
j `j . Combining the

upper bounds on type I and type II charges, we are done. �

By mimicking Lemma 5.3, we have

Lemma 5.11 (Lower Bound on OPT).

OPT ≥ 1

2
(
∑
j∈J

rank−src(j)(j) · `j +
∑
j∈J

rank−des(j)(j) · `j)

Theorem 5.12. The Smith’s Greedy algorithm gives a 2-
approximation for problem (C).



D. Jobs of Arbitrary Size and Arbitrary Release Time

This is the most general setting and the methods we
used before do not work for (D). In particular, the jobs of
smaller size should be given higher priority in order to reduce
the sum of completion time. We show an online algorithm
incorporating this idea with a more complicated analysis.

Let H = (V ;E) be the job request graph. We assume that
dv are the same for all v in this section. Our algorithm will use
the SRPT (Shortest Remaining Processing Time) algorithm as
a subroutine, which is optimal for online scheduling in a single
machine for minimizing the average completion time [25]. For
scheduling multiple machines (an NP-hard problem), SRPT
achieves an approximation factor of 1.86 which is the best
approximation factor known so far for this problem [6]. In
this paper we define α = 1.86 if d ≥ 2 and α = 1 if d = 1.

Definition 5.13 (SRPT for d-machine scheduling). At each
time slot t, among all jobs that are alive (i.e. those already
arrived but have not yet been completed), choose the d jobs with
the smallest remaining processing time, and arbitrarily assign
them to the d machines to schedule.

Notice that the SRPT algorithm is preemptive – a job
might be temporally held if a new job with smaller size
arrives. We first explain how to schedule the jobs in an offline
setting. Define J(v) the list of data transfer requests that either
starts from or ends at node v. Let us start with d = 1. As
preprocessing, we perform SRPT scheduling on J(v) for each
node v and keep an SRPT list L(v), indexed by time slot. The
t-th position is marked j if it is used to process job j, and
called a dummy unit if no job is processed in this time slot. A
job of size ` will need ` time slots, called job units in L(v).
It can be understood as chopping this job into ` data blocks
each taking exactly one slot to finish.

Note that each job j = (v, w) should appear in exactly two
lists, i.e. L(v) and L(w), with `j job units in each, and 2`j job
units in total. The units of j in L(v) are denoted by uvj,1...u

v
j,`j

.
We will view these 2`j job units as distinct. But each of the `j
job units of j in L(u) has a twin in the list L(v), corresponding
to the same piece of data blocks. For simplicity we only state
the offline version for d = 1, see Fig 3 for illustration.

Definition 5.14 (Offline SRPT-based SDN Scheduling).
Given a request graph H , for each v, find and store the SRPT
list for J(v). Then, for each time slot t, we follow the steps
below to select the jobs to process at t:

1) Sort Job Units: denote by A = ∪v∈V L(v). The job units
inA are sorted into a listO as follows: we first collect the
job units from the head of all the listsL(v) (in an arbitrary
order) into A. If a list is empty, skip it. Repeat this until
all job units are collected. Note that the job units in each
list L(v) are going to appear in the same order as in A.

2) Choose Job Units: Find a maximal matchingM =M t as
follows: for each unit in O, if it does not create conflict
with other edges chosen in M , then add it into M . (A
dummy unit from L(v) is considered a self-loop at v.)

Note that at each time slot, we choose at most one unit
from each list, either a real or a dummy one.

3) Update the lists: Suppose unit u from job j = (v, w) is
chosen, and w.l.o.g suppose it is from L(v), if it is not a
dummy unit, then we delete it from L(v), and also delete
its twin u′ from L(w); else just remove u itself.

For a d-machine scheduling problem for J , let Li be
the SRPT schedule on the ith machine, i = 1...d. Let
Li = ∪vLi(v), where Li(v) is the ith job list for J(v). We
perform step (2) for each Li separately and obtain d matchings
at each t (one for each i), and schedule all of them. We first
analyze the offline version below.

Fig. 3. A concrete example for the offline version. Suppose we have 4 jobs:
j1 = (1, 3) (orange), j2 = (2, 3) (blue), j3 = (2, 4) (green), with release
time 0, 2, 1 and size 4, 1, 3 respectively. The SRPT lists are shown in the fig-
ure, where the white units represent dummy units. Then our algorithm returns
the following matchings: M1 = {(1, 3)},M2 = {(1, 3), (2, 4)},M3 =
{(1, 3), (2, 4)},M4 = {(1, 3), (2, 4)},M5 = {(2, 3)}.

For a job j = (u, v), let Cu(j) be the completion time
of job j in the SRPT scheduling for d machines for J(u).
For a schedule σ for our SDN problem, define Cσ(j) as the
completion time of j.

Lemma 5.15. If for some f , Cσ(j) ≤ f · (Cu(j)+Cv(j)) for
any j, then σ is a 2fα-approximation.

Proof: Let σ∗ be an optimal schedule for our SDN problem.
Let SRPT(u) denote the total completion time of the SRPT
schedule for jobs incident to u and TCT(σ) to denote total
completion time of a schedule σ for our SDN problem. First,

TCT(σ) ≤ f
∑
j∈J(C

u(j) + Cv(j))

= f
∑
u∈V

∑
j∼u C(j) = f

∑
u∈V SRPT(u).

On the others hand,

TCT(σ∗) =
1

2

∑
u∈V

∑
j∼u

Cσ∗(j) ≥
1

2α

∑
u∈V

SRPT(u)

. Combining these two inequalities and we are done. �

Given a job j = (v, w) and a pair of twin units uvj,l, u
w
j,l in

L(v) and L(w) respectively, define Z(j, l) to include the job
units uvj,l, u

w
j,l and those that are before uvj,l, u

w
j,l in L(v) and

L(w) respectively. Now we claim,

Lemma 5.16. We will schedule at least one unit in Z(j, l) in
step (2) of our algorithm.

Proof: If we have not selected any job unit in Z(j, l), we
have chosen no job incident to either v or w. Hence when
we encounter either uvj,l or uwj,l, we accept it (since it will not
create conflict). �



Theorem 5.17. For problem (D), the SRPT-based SDN
scheduling gives a 2-factor when all degree constraints are one,
and a 2α-factor when all degree constraints are the same.

Proof: For a job j = (v, w) with size lj , clearly the units
uvj,lj and uwj,lj are the Cv(j)th and Cw(j)th unit in L(w) and
L(v) respectively. By Lemma 5.16, in at most Cv(j)+Cw(j)
time, one of uwj,lj and uvj,lj is scheduled (and hence its twin
removed immediately), hence the completion time of j in our
algorithm is at most Cv(j)+Cw(j). Set f = 1 in Lemma 5.15
and we are done. �

Lemma 5.18. Suppose for job j = (v, w), uvj,i and uwj,i are the
kth, k′th unit in the SRPT list for J(v) and J(w) respectively,
w.l.o.g assume k ≤ k′. For any t ≥ k, if uvj,l is still not removed
from L(v) (hence uwj,l is also in L(w)), then we will schedule
at least one unit in Z(j, i).

Note that in the offline version, once we completed prepro-
cessing, we never add new units to the lists. A major difference
of the online version is, at each t, we add exactly one new
unit, either real or dummy, to the tail of each L(v). To be
precise, if SRPT for J(v) processes job j at time t, then we
add a unit of j to the tail of L(v).

Theorem 5.19. For the online version of (D), there is a 3α-
competitive algorithm.

Proof: For a job j = (v, w) with size lj , the units uvj,lj and
uwj,lj are the Cv(j)th and Cw(j)th unit in L(w) and L(v)
respectively. By Lemma 5.18, in at most Cv(j) + Cw(j) +
min{Cv(j), Cw(j)} time, one of uwj,lj and uvj,lj is scheduled,
hence the completion time of j is at most 1.5(Cv(j)+Cw(j)).
Set f = 1 in Lemma 5.15 and we are done. �

E. Lower Bound

We take the same bipartite graph setting as in Section
IV. Figure 4 provides a lower bound of 1.75 for the simple
greedy scheduling in the online setting when the objective
total completion time, when all job sizes are 1. Further, we
also show a lower bound of 1.5 for any online scheduling
algorithm for minimizing sum completion time in Figure 5.

VI. EVALUATION

In this section, we compare the performance of three al-
gorithms: (1) Simple Greedy which randomly finds a maximal
matching at each time slot; (2) Smith’s Greedy which first sorts
all transfers according to their size, and then finds a maximal
matching in this order at each time slot; (3) SRPT-based
Greedy described in Algorithm 5.14. We use the following
four metrics to evaluate the algorithms: makespan, 90-pct
makespan (the time when 90 percent of transfers), average
transfer completion time, and 90-pct transfer completion time.
We use network topologies with different sizes, from 200
nodes to 2000 nodes. For traffic demand, we generate them
using a wide variety of distributions. We denote Exp(2p) the
truncated exponential distribution: P (X = 2i) = 2−(i+1) for
i = 0, ..., p−1 and P (X = 2p) = 2−p. Denote Poisson(µ, T )

Time 0 1 2

Request

OPT

Greedy

3

Fig. 4. Assume |V | = |V ′| = 2n. At time 0, the requests con-
sist of {(sj , s′(j+2k) mod (2n)

)|1 ≤ j ≤ 2n, 1 ≤ k ≤ n} and
{(sj , s′(j+1) mod 2n

)|j = 2k−1, 1 ≤ k ≤ n}. At time t from 1 to 2n−1,
if t is an odd number, the requests consist of {(s2j , s′(2j+t) mod 2n

)|1 ≤
j ≤ n}; otherwise the requests consist of {(s2j−1, s

′
(2j+t) mod 2n

)|1 ≤
j ≤ n}. In the optimal solution, at time t ≤ 2n − 1, we schedule the
edges {(sj , s′(j+t) mod (2n)

)}. The sum completion time is 2n2(2n+ 1).
For greedy scheduling algorithm, in the worst case, if t is odd, we sched-
ule {(s2j , s′(2j+t) mod 2n

)|1 ≤ j ≤ n}; if t is even, we schedule
{(s2j−1, s

′
(2j+t) mod 2n

)|1 ≤ j ≤ n}. At time 2n, each node has degree
n. The average completion time is n2(7n+1). When n→∞, the competitive
ratio is asymptotically 1.75.

Time 0 1 2

Request

OPT

Online

Fig. 5. The lower bound for any online algorithm to minimize sum completion
time. There are two requests (s2, s′1) and (s2, s′2) at time 0. In the online
algorithm if we schedule (s2, s′2) at the 0th slot, the request (s1, s′1) comes at
time 1. Otherwise, the request (s1, s′2) comes at time 1. The optimal offline
algorithm can always finish the requests in 2 time slots while any online
algorithm must finish the requests in 3 time slots.
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Fig. 6. Results of zero release time. Dark bars are 90-pct makespan & avg.
completion time; light bars are full makespan & 90-oct completion time. The
x-axis is network size, and the y-axis is normalized time. Fig. 7 and 8 have
the same legends.
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Fig. 7. Results of uniform release time.
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Fig. 8. Results of Poisson release time.

as discretized Poisson Process: for each integer t ≤ T ,
the number of events in [t, t + 1] is distributed according
to Poisson distribution with mean µ. Denote Pow(xmax)
the power law distribution truncated (and normalized) at y,
formally, its probability density distribution is f(x) ∝ x−k,
0 ≤ x ≤ xmax, with k = 2. Due to limited space, we report
results of most representative settings as follows.

Zero Release Time. We generate traffic demand as follows.
With the nodes in the topology, we randomly generate a
bipartite graph with n1 = n2 = 1

2n nodes on each side. For
each pair of nodes, we adds a data transfer between them with
probability p = 0.3 with the size following Exp(128). The
degree constraint of each node follows Exp(64). Fig 6 shows
the results. We can see that Smith’s greedy has smaller 90-
pct makespan, average and 90-pct transfer completion times,
which are consistent with our theoretical analysis.

Uniform Release Time. In this experiment, data transfers
are generated as similar to the previous one except that release
time follows U(0, 128) and transfer size follows Exp(1024).
The results are shown in Fig 7. Smith’s greedy has smaller
completion time, and the advantage becomes significant as the
network size grows. This is because with larger network, the
expected number of jobs incident to each job also increases
and the benefits of sorting is bigger.

Poisson Release Time. This experiment changes release
time to follow Poisson(3, 100) and transfer size to follow
Pow(2048). The results are shown in Fig 8. The trend is
opposite to Fig 7: as the network size grows, the advantage
of Smith’s greedy becomes less obvious. This is because in
these traffic demands, the jobs incident to each node become
more sparse when network size increases. The conclusion is,
Smith’s greedy is more effective when jobs are dense.

VII. CONCLUSION

In conclusion, this paper presents the first theoretical analy-
sis of approximation algorithms for the data transfer problem
in optical WANs. We prove competitive ratios of these algo-
rithms in a variety of settings and use simulations to evaluate
their performance in practice. Software-defined optical WANs
are in its early stage. We hope this work can encourage future
research to enhance the design and practice of optical WANs.
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