
Intra-Data-Center Traffic Engineering with

Ensemble Routing

Ziyu Shao∗, Xin Jin+, Wenjie Jiang⋄, Minghua Chen∗, and Mung Chiang+

∗ The Chinese University of Hong Kong, + Princeton University, ⋄Google

Email: {zyshao, minghua}@ie.cuhk.edu.hk, xinjin@cs.princeton.edu, chiangm@princeton.edu, joe.wenjie.jiang@gmail.com

Abstract—Today’s data centers are shared among multiple
tenants running a wide range of applications. These applications
require a network with a scalable and robust layer-2 network
management solution that enables load-balancing and QoS provi-
sioning. Ensemble routing was proposed to achieve management
scalability and robustness by using Virtual Local Area Networks
(VLANs) and operating on the granularity of flow ensembles,
i.e. group of flows. The key challenge of intra-data-center
traffic engineering with ensemble routing is the combinatorial
optimization of VLAN assignment, i.e., optimally assigning flow
ensembles to VLANs to achieve load balancing and low network
costs. Based on the Markov approximation framework, we solve
the VLAN assignment problem with a general objective function
and arbitrary network topologies by designing approximation
algorithms with close-to-optimal performance guarantees. We
study several properties of our algorithms, including performance
optimality, perturbation bound, convergence of algorithms and
impacts of algorithmic parameter choices. Then we extend these
results to variants of VLAN assignment problem, including
interaction with TCP congestion and QoS considerations. We
validate our analytical results by conducting extensive numerical
experiments. The results show that our algorithms can be tuned
to meet different temporal constraints, incorporate fine-grained
traffic management, overcome traffic measurement limitations,
and tolerate imprecise and incomplete traffic matrices.

I. INTRODUCTION

In recently years, various ways to leverage multi-path rout-

ing in Ethernet-based data center networks [1]–[4] have been

proposed for scalable traffic management. The use of multi-

path routing raises the need of intelligent traffic engineering

and flow control. Ensemble routing [4] provides an efficient

way to dynamically manage a huge amount of traffic flows

in large-scale data center networks with arbitrary topology.

The core idea of ensemble routing is to operate on the

granularity of flow ensembles, rather than individual flows,

by adopting Hash-Based Routing (HBR). A flow ensemble

is a collection of flows, each of which follows the same

routing path. Each flow, identified by the tenant ID and packet

header tuple, is classified into a traffic class, which determines

the QoS treatment for the flow, and a hash class, which is

simply calculated by a hash function. The traffic class and the

hash class determine the routing class of the flow, i.e., the

flow ensemble the flow belongs to. Ensemble routing greatly

reduces management overhead and is scalable to manage a

huge amount of traffic flows. Compared to other data center

traffic management schemes, ensemble routing is also more

promising for OpenFlow based Software Defined Networks

(SDN) due to its ability to perform hash-based routing [4].

Ensemble routing makes use of Virtual Local Area Net-

works (VLANs) [5], [6] to provide multiple routing networks,

similar to [3]. VLANs are extensively used in enterprise

networks to improve Ethernet scalability, where each VLAN

constitutes a subnet that behaves logically like a conventional

LAN but is independent of the physical locations of the hosts.

Each VLAN constitutes a separate broadcast domain, and a

separate spanning tree rooted at a switch is constructed per

VLAN. Figure 1 shows an example of VLAN configuration

on a fully connected (clique) topology with four switches.

We list four VLANs (four one-hop spanning trees, with each

switch as its root, respectively). For a network with n switches

over a clique topology, there are nn−2 spanning trees by

the well-known Cayley’s formula [7]. However, in practice,

the total number of VLANs is limited due to protocol and

implementation limitations. Typically, a network is limited to

have 4096 VLANs and each switch is restricted to support

300-500 VLANs [5].

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

������	
 ����� ����� ����� �����

Fig. 1. A fully-connected network topology with four switches. Four VLANs
are constructed with each switch as the root of a one-hop spanning tree. Each
traffic flow has many choices of paths. For example, one flow from switch 1
to switch 3 can adopt either a one-hop path at VLAN 1 (1 → 3) or a two-hop
path at VLAN 2 (1 → 2 → 3).

The key problem for intra-data-center traffic engineering

with ensemble routing is VLAN assignment, i.e., assigning

flow ensembles, or routing classes, to VLANs to achieve

globally optimized network performance for multiple tenants

through load balancing. This problem is challenging not only

because the number of possible VLAN assignments can be

huge, but also because of the following three major practical

concerns:

• Re-optimization intervals: Data center applications usu-

ally have dynamic traffic patterns. Enforcing right tem-

poral constraints on how fast we re-optimize VLAN

assignments and shift existing traffic improves network

stability and management efficiency. However, enforcing

inappropriate re-optimization intervals diminishes net-

work performance.

• The number of flows per routing class: Ensemble routing

can be generalized to have different numbers of flows

in one routing class. It raises a question of how this

generalization can be done in terms of in both effective-

ness and scalability. Increasing the number of flows per

routing class leads to fine-grained traffic management on

one hand, while increasing the computational complexity

on the other hand.

• Inaccurate traffic measurements: In practice, traffic mea-

surement may be imprecise and may only be taken

on a set of limited locations. This will undermine the

effectiveness of traffic estimation accuracy, which further

leading to potentially suboptimal VLAN assignments.

Several recent papers have tried to solve the VLAN as-

signment problem. In [4], a greedy heuristic algorithm was

proposed to assign VLAN for each routing class. In [8], a

linear programming based heuristic was proposed. In [9], a

water-filling based local search heuristic was proposed and its

effectiveness on the Open Cirrus cloud computing platform

was also demonstrated. All these existing efforts [4], [8], [9]

enrich the fundamental understandings of ensemble routing

and data center traffic engineering. However, algorithms with

performance guarantee and analytical studies of the impacts

of system parameters are yet to be found. These features

are indispensable for the building of service level agreement

(SLA) and QoS guarantee in data center networks.
In this study of the VLAN assignment problem, we adopt

and extend the Markov approximation framework [10]. This

framework not only enables us to design approximation algo-

rithms with close-to-optimal performance guarantee, but also

gives us degrees of freedom to design algorithms allowing

parallel and distributed implementations. Our main results and

contributions are listed as follows:

• For any objective function of network performance and

arbitrary network topology, we design an approximation

algorithm to solve VLAN assignment problem with prov-

able near-optimal performance guarantee. This algorithm

implicitly finds the best VLAN assignment by imple-

menting a Markov chain over all VLAN assignments and

performing state jumping. (Section II.A)

• We characterize the key properties of the designed

Markov chain: approximation gap, perturbation error

bound, mixing time, and trade-off between approximation

gap and mixing time. These studies enable us to analyze

performance optimality, convergence, and impacts of de-

sign parameters. (Section II.C)

• Our algorithm allows parallel and distributed implemen-

tation if we replace the objective function of network

performance with a local estimation value. The induced

optimality gap can be analyzed via perturbation analysis.

(Section II.B)

• We outline how to extend the Markov approximation

framework in two aspects: one is the characterization

of perturbation bound due to estimation errors of traffic

matrix and the other is the characterization of the relation-

ship between mixing time of our designed Markov chain

��������

	
�����
�����

���

�

�

	

�

�

�

�

�

	

�

�

�

�

�

	

�

�

�

���

���

�

�

	

�

�

�

���

��������

	
�����
�����

Fig. 2. Example of VLAN assignments. There are four routing classes (A,B,C
and D) and two pre-configured VLANs (1 and 2). Four of all sixteen possible
assignments are shown here as (a),(b),(c) and (d).

and the fastest mixing Markov chain. (Section II.D)

• We study variants of VLAN assignment problem, includ-

ing interaction with TCP congestion control and QoS

considerations. (Section IV)

• We conduct numerical results to show performance of our

algorithm under many practical concerns. It is found that

our algorithm can be tuned to meet different temporal

constraints, incorporate fine-grained traffic management,

and tolerate imprecise and incomplete traffic matrices.

(Section III)

Due to the page limitation, all proofs can be found in our

technical report [11].

II. VLAN ASSIGNMENT PROBLEM

First we introduce some notation. The underlying physical

network is denoted by G = (N,L), where N denotes the

set of network nodes and L denotes the set of physical links.

The set of routing classes is denoted by H and the set of

pre-configured VLANs by V . The set of all feasible VLAN

assignments is denoted by X , where each assignment x ∈ X
maps every routing class h ∈ H to one VLAN v ∈ V . This

mapping relationship is denoted by v = x(h). Multiple routing

classes can be assigned to the same VLAN, while one routing

class cannot be assigned to multiple VLANs. Examples of

VLAN assignment are shown in Figure 2. In general, given

|H| routing classes and |V| pre-configured VLANs, there are

totally |V||H| VLAN assignments, i.e., |X | = |V||H|.
For each routing class h ∈ H, T (h) represents the estimated

flow(rate) vector for routing class h. Given a VLAN v ∈ V ,

P (v) represents the corresponding link-flow routing matrix,

and r(v) represents a vector of traffic rates contributed by

VLAN v. Let r represent the vector of aggregate traffic rates

on physical links. Then we have the following relationships

between T and r:
∑

h:v=x(h)

P (v)T (h) = r(v), ∀v ∈ V (1)

r =
∑

v∈V r(v). (2)

Let C represent the capacity vector for the physical links

in the underlying network. The corresponding utilization for

any link l ∈ L under VLAN assignment x is defined as

ul(x) =
∑

v∈V r
(v)
l

Cl

. Let u(x) denote the vector of link uti-

lizations. We also let Φx = Φ(u(x)) denote a function of link

utilization under VLAN assignment x that reflect the network

performance under x. In the literatures of traffic engineering

[12], [13], Φx represents network costs under assignment x.

By minimizing some network cost function, we can avoid

solutions that operate near the capacity of the links and shift

flows to less utilized links. A common example is to minimize

the maximum link utilization, where Φx = maxl∈L ul(x).
The other common objective is to minimize a network-wide

objective, where Φx =
∑

l∈L f(ul(x)) and f(·) is a convex

and increasing function that penalizes solutions with heavily-

loaded links. In practice, function f is usually set to be a

piecewise-linear form for faster computation time.
Given a general network cost function Φ, the problem

of minimizing network cost by choosing the best VLAN

assignment can be formulated as the following combinatorial

optimization problem:

MP : min Φx (3)

s.t. x ∈ X . (4)

where Φx is the network cost under given VLAN assignment

x. Φx is a function of link utilization u(x), which depends on

T and r satisfying (1) and (2).
Problem MP is challenging to solve. Indeed, we have the

following result:

Proposition 1. Problem MP is NP-complete and APX-hard

(no effective polynomial-time approximate solution).

A. Markov Approximation

We apply Markov approximation framework [10] to solve

the above combinatorial optimization problems. Instead of

directly solving problem MP , we solve the following ap-

proximated problem [10]:

MP− β : min
∑

x∈X

pxΦx +
1

β

∑

x∈X

px log px (5)

s.t.
∑

x∈X

px = 1, (6)

px ≥ 0, ∀x ∈ X (7)

where px is the probability that the system is operated under

VLAN assignment x ∈ X , and β is a positive constant that

controls the approximation accuracy.
In fact, the optimal solution to problem MP − β is given

by

p∗x =
exp(−βΦx)

∑

x′∈X exp(−βΦx′)
, ∀x ∈ X . (8)

and the corresponding optimal object value is

Φ̂ = −
1

β
log

(

∑

x∈X

exp(−βΦx)

)

. (9)

The approximation accuracy is known as follows [10]:

min
x∈X

Φx −
1

β
log |X | ≤ Φ̂ ≤ min

x∈X
Φx (10)

Clearly, as β approaches infinity, the approximation gap

approaches zero. The tradeoff is that larger β slows down the

convergence. We will elaborate on this tradeoff soon.

Next, we will design a time-reversible VLAN-hopping

Markov chain with a state space being the set of all feasible

VLAN assignments X and a stationary distribution being the

product-form distribution p∗x in (8). Then our solution is to hop

among different states (different sets of VLAN assignments)

according to this Markov chain. When this Markov chain

converges, we solve the problem MP (3) approximately.
There are two degrees of freedom in designing a time-

reversible VLAN-hopping Markov chain:

• The state space structure: we choose such structure

of state space that direct transitions between two states

corresponds to one and only one routing class switching

its assigned VLAN. For example, in Figure 2, suppose

these four VLAN assignments are states of some Markov

chain, then we allow the direct state transitions between

(a) and (b), which correspond to routing class C switching

between VLAN 1 and VLAN 2. Similarly, we allow

the direct state transitions between (c) and (d), which

correspond to routing class D switching between VLAN

1 and VLAN 2. However, we do not allow the direct

state transitions between (b) and (c), which correspond

to routing classes B and C switching between VLAN 1

and VLAN 2. It is not hard to show the state space is

connected and any two states are reachable from each

other.

• Direct transition rates: for any two states x, x′ with

direct transitions, let qx,x′ be the transition rates from

state x to another state x′, then we set

qx,x′ = α exp(βΦx), (11)

where α is a positive constant. It is not hard to see these

transition rates satisfy detailed balance equation for the

time reversible VLAN-hopping Markov chain.

B. VLAN Assignment Algorithm

We can implement the designed VLAN-hopping Markov

chain as follows: Initially, each routing class h ∈ H is

assigned a VLAN v randomly picked from V . Under the

current VLAN assignment x, each routing class is associated

with an exponentially distributed random number with a mean

equal to

exp(−βΦx)

α(|V| − 1)
(12)

and counts down according to this number. When the count

down of a routing class h expires, this routing class is assigned

a new VLAN randomly picked from V−x(h) (its |V|−1 not-

in-use VLANs). System will informs other routing classes to

terminate their current count down processes and start fresh

ones using new measurements under the new VLAN assign-

ments x′. We will refer to this the “Wait-and- Hop” algorithm.

The corresponding pseudocode is shown in Algorithm 1.
The correctness of the “Wait-and-Hop” algorithm is shown

in the following proposition.

Proposition 2. The Wait-and-Hop algorithm realizes a

continuous-time VLAN-hopping Markov chain with stationary

distribution shown in (8).

Algorithm 1 “Wait-and-Hop” algorithm

1: The following procedure runs on each individual routing

class independently. We focus on a particular routing class

h.

2: procedure INITIALIZATION

3: x(h)← v randomly picked from V
4: invoke Procedure Wait(h)

5: end procedure

6: procedure WAIT(h)

7: Obtains the value of Φx

8: generates a timer τh ∼ exp(λ) with rate λ = α(|V| −
1) exp(βΦx)

9: begins counting down

10: while the timer τh does not expire do

11: if receives a message of RESET then

12: index ← 1
13: break

14: end if

15: end while

16: if index = 1 then

17: terminates current countdown process and invoke

Procedure WAIT(h)

18: index ← 0
19: else

20: Invoke Procedure HOP(h)

21: end if

22: end procedure

23: procedure HOP(h)

24: x′(h)← v′ randomly picked from V − v

25: broadcasts a RESET message to other routing classes

26: end procedure

Our “Wait-and-Hop” algorithm is parallel and distributed

if we can obtain local estimations of Φx. The optimality gap

due to estimation errors can be analyzed via the following

perturbation analysis.

C. Perturbation Analysis

For each state x ∈ X , if we obtain the accurate value

of Φx for any state x, then the state distribution of the

designed Markov chain will converge to the desired stationary

distribution shown in (8). Hence guided by Markov chain, we

obtain a close-to-minimal network cost.
However, in practice, we usually obtain perturbed (inaccu-

rate) values of Φx for any x ∈ X . This inaccuracy is caused

by two kinds of perturbations:

• Passive Perturbation: this means the imprecise and

incomplete measurements of traffic flow rates, leading to

the imprecise and incomplete traffic matrices.

• Active Perturbation: this means for any state x, we

replace Φx (which may need global network information

and hard to compute) with problem-specific local esti-

mates to enable parallel and distributed implementations.

Consequently, with perturbed errors of Φx, x ∈ X , the

perturbed VLAN hopping Markov chain may converge to a

sub-optimal steady-state distribution, resulting in an optimality

gap. To characterize the optimality gap due to the perturbation

errors, we adopt the quantization error model proposed in [14].
For each state x ∈ X with Φx, we assume its corresponding

perturbation error belongs to the bounded region [−∆x,∆x],
where ∆x is the error bound and can be different for different

x. We also assume the perturbed Φx takes only one of the

following 2nx + 1 discrete values:
[

Φx −∆x, . . . ,Φx −
1

nx

∆x,Φx,Φx +
1

nx

∆x, . . . ,Φx +∆x

]

,

where nx is a positive constant. Further, with probability

ηj,x, the perturbed Φx takes the value Φx + j

nx

∆x, ∀j ∈
{−nx, . . . , nx} and

∑nx

j=−nx
ηj,x = 1.

Let Φmin = minx∈X Φx denote the minimal network

cost, ∆max = maxx∈X ∆x the maximum perturbation error,

Φ∗
ave =

∑

x∈X p∗x ·Φx the expected network cost with VLAN-

hopping Markov chain, and Φ̄ave =
∑

x∈X p̄x · Φx the

expected network cost with perturbed VLAN-hopping Markov

chain. By perturbation analysis developed in [14], we have the

following result:

Theorem 1. (a) The stationary distribution of the perturbed

VLAN-hopping Markov chain is

p̄x(Φ) =
σx exp (−βΦx)

∑

x′∈X σx′ exp (−βΦx′)
, ∀x ∈ X (13)

where σx =
∑nx

j=−nx
ηj,x exp

(

β j∆x

nx

)

.

(b) The optimality gap are shown as follows:

0 ≤ Φ∗
ave − Φmin ≤

|H| log |V|

β
, (14)

0 ≤ Φ̄ave − Φmin ≤
|H| log |V|

β
+∆max, (15)

Remarks:

• The upper bound on optimality gap of perturbed VLAN-

hopping Markov chain shown in (15) is quite general,

as it is independent of the values of nx, x ∈ X and the

values of ηj,x (−nx ≤ j ≤ nx, x ∈ X).
• When β increases, the optimality gap for both the per-

turbed VLAN-hopping Markov chain and the VLAN-

hopping Markov chain decreases. However, increasing β

may also increase the mixing time of the Markov chain.

We will present bounds on the mixing time in the next

subsection.

• The upper bound on optimality gap of perturbed VLAN-

hopping Markov chain is more loose than the counterpart

of VLAN-hopping Markov chain because of perturbation

errors. The difference is ∆max and we call it “the price

of perturbation errors”.

Given the exact form of objective function and suppose

there are only flow estimation errors, we can characterize the

relationship between the flow estimation errors and perturba-

tion errors, and then apply Theorem 1. However, this bound

may be loose. Therefore, we extend the Markov approximation

framework and show that we can replace perturbation bound

with maximum perturbation error ∆max by a more tight bound

with the expected value of perturbation errors. For example,

when Φx = maxl∈L ul(x), ∀x ∈ X , we have following result:

Corollary 1. The optimality gap of corresponding perturbed

Markov chain is

Φ̄ave − Φmin ≤
|H| log |V|

β
+max

l∈L

dl

Cl

ǫl, (16)

where dl denotes the number of flows traversing link l, ǫf
denotes the estimated error of flow rates for flow f , ǫl =
maxf∈lE|ǫf | denotes the maximum expected absolute value

of the estimation error of flow rates for any flow traversing

link l.

D. Mixing Time Analysis

We study the mixing time (convergence time) of the VLAN-

hopping Markov chain. The perturbed version is a straight-

forward extension. First, we introduce the definition of total

variation distance between any two probability distributions p

and p′ over state space X as follows:

||p− p′||TV ,
1

2

∑

x∈X

|px − p′x|. (17)

Now let P t(x) denote the probability distribution of all

states in X at time t given that the initial state is x. Then the

mixing time of the VLAN-hopping Markov chain is defined

as follows:

tmix(ǫ) , inf

{

t ≥ 0 : max
x∈X
||P t(x)− p∗||TV ≤ ǫ

}

, (18)

where p∗ is the stationary distribution shown in (8).
We adopt the spectral analysis method [15] to obtain both a

lower bound and an upper bound of tmix(ǫ) for general values

of β. We also adopt path coupling method [16] to obtain a

tight upper bound of tmix(ǫ) for some values of β. Denote

Φmax , maxx∈X Φx and Φmin , minx∈X Φx, we have the

following results:

Theorem 2. The mixing time (convergence time) of the VLAN-

hopping Markov chain is bounded as follows:

(a) for general β ∈ (0,∞)

tmix(ǫ) ≥
exp (−βΦmax)

2α(|V| − 1)|H|
· ln

1

2ǫ
, (19)

and

tmix(ǫ) ≤
2

α
· (|V| − 1) · |H| · |V|2|H| · exp(β(4Φmax − 3Φmin))

·

[

ln
1

2ǫ
+

1

2
|H| · ln |V|+

1

2
β · (Φmax − Φmin)

]

.

(20)

(b) When 0 < β < βth = 1
2(Φmax−Φmin)

ln(
|H|+ 1

|V|−1

|H|−1), we

have a tighter upper bound

tmix(ǫ)

≤
exp (β(2Φmax − Φmin)) · ln

|H|
ǫ

α(|V| − 1)
[

|H|+ 1
|V|−1 − (|H| − 1) exp(2β(Φmax − Φmin)

] .

(21)

Recall that in practice, |V|, i.e., the total number of VLANs

is limited by some constants [5]. Now given constant |V|,

Φmax and Φmin, we have following observations when β scales

with |H|:
• As β ∼ log(|H|), optimality gap Φ∗

ave − Φmin ∼
O(|H|

log(|H|)) in (14), tmix(ǫ) ∼ exp(Ω(|H|)) in (20), and

tmix(ǫ) ∼ O(|H| log(|H|)) in (21).

• As β ∼ |H|, optimality gap Φ∗
ave−Φmin ∼ O(1) in (14),

tmix(ǫ) ∼ exp(Ω(|H|)) in both (20) and (21).

When β is a given constant, we consider the trade-off

between the optimality gap of VLAN-hopping Markov chain

(Theorem 1) and its mixing time (Theorem 2), e.g., the two

ends of this spectrum.

• As β →∞, the optimality gap of VLAN-hoping Markov

chain approaches zero while the upper bound of its

mixing time scales with exp(Ω(|H|)) and approaches

infinity (slow-mixing).

• As β → 0, the optimality gap of VLAN-hoping Markov

chain approaches infinity while the upper bound of its

mixing time scales with O(log(|H|)) and remain limited

(fast-mixing).

This resembles the phase transition phenomenon in statistics

physics: when β ≤ βth, the whole system is fast mixing,

while when β > βth, the whole system is slow mixing. Here

βth is the threshold value for phase transition. In our case,

βth = 1
2(Φmax−Φmin)

ln(
|H|+ 1

|V|−1

|H|−1), a small value. In practice,

βth can be larger. In extreme case with |H| = 1, βth → ∞
and the whole system is always fast mixing.

Now suppose the topology of state space of VLAN-hopping

Markov chain and the stationary distribution (13) are kept the

same, let t∗mix(ǫ) denote mixing time of corresponding fastest

mixing Markov chain, which may be obtained with prohibitive

computational complexities. By the variational characteriza-

tion of eigenvalues [15], [17], we have the following result:

Proposition 3. The mixing time of VLAN-hopping Markov

chain tmix(ǫ) is bounded as follows:

t∗mix(ǫ) ≤ tmix(ǫ) ≤
|H| · (|V| − 1)

exp(β(Φmin − Φmax))
· t∗mix(ǫ) (22)

Note that in practice, we usually observe more tight bounds.

III. PERFORMANCE EVALUATION AND PRACTICAL ISSUES

In this section, we evaluate performance of our algorithm

with practical issues including re-optimization intervals, non-

uniform traffic matrices, the number of flows per routing

class, imprecise and incomplete traffic matrices. In practice,

the switch is essentially a rack under which many (e.g.,

hundreds of) hosts are connected to. The capacity of link

connecting the host to the switch (e.g., the rack) is usually

lower than inter-switch (rack) capacities. What is more, the

clique topology is a good starting point for benchmarking.

Therefore, in experiments, we use a clique topology with four

switches as shown in Figure 1. Four VLANs are constructed

with each switch as the root of a one-hop spanning tree. One

single host is attached to each switch. The bandwidth of each

link that connects switches is 1Gbps, and the bandwidth of

each link that connects a host and a switch is 100Gbps. We

choose 8 hash classes and use all-pair shuffle traffic for each

hash class. There are 96 flows in total. We also use both

uniform and non-uniform traffic matrices in experiments.
We use realistic dynamic traffic patterns, where VLAN

assignments should be re-optimized over time. VLAN assign-

ment re-optimization can be conducted at different time scales,

ranging from a single-flow duration to once every several

seconds. The need for responsive traffic engineering may

require the timescale to be sub-second, which is practically

feasible in openflow-enabled networks. Different optimization

granularity can result in different performance. A short re-

optimization time can lead to lower congestion cost, higher

throughput and shorter completion time. On the other hand,

it can also increase computation cost. Tuning to re-optimize

VLAN assignments at different time-scales allows the operator

to strike a complexity-optimality tradeoff.

A. Under Uniform Traffic Matrix

We evaluate how the optimization interval influences the

algorithm performance, first under uniform traffic matrix. A

uniform traffic matrix means all entries in the traffic matrix

have the same value. In our setting, we set each flow with 1Gb.

We varied the optimization interval from small time interval

to large time interval, i.e., upon every flow completion, every

1 second, every 5 seconds, and every 10 seconds.
Figure 3 shows how the total throughput evolves over

time under different optimization intervals. The completion

time of all traffic flows increases as the optimization interval

increases. The system uses the least time to complete all traffic

flows when optimization is performed upon completion of each

flow. The system achieves high throughput most of the time

when optimization is performed upon completion of each flow,

except in the end when there are only a few unfinished traffic

flows, as shown in Figure 3(a). But when the optimization

interval increases, the system can no longer achieve high

throughput most of the time. For example, as shown in

Figure 3(c), when the optimization interval is 5 seconds, it

only achieves high throughput after each re-optimization, i.e.

at 0s, 6s, and 11s. Between two re-optimizations, the total

throughput decreases over time since some flows finish in the

interval and no re-optimization is done to utilize the idle or

underutilized links. For instance, between 6s and 11s, the total

throughput decreases.
What is more, for the four optimization intervals, the total

completion time is 10.9s, 12.0s, 14.5s and 17.1s respectively.

This means when we perform optimization every several

seconds, the system can still finish all work in a reasonable

time. This allows a good complexity-optimality tradeoff.

B. Under Non-uniform Traffic Matrix

We now evaluate how the optimization interval influences

the algorithm performance under non-uniform traffic matrix.

Each flow is generated from normal distribution N (1, 0.2) and

100 samples of traffic matrices are used.
Figure 4 and Figure 5 show the total completion time

under different optimization intervals. Figure 4 shows the

CDF(Cumulative Distribution Function) of total completion

time. It is shown that the total completion time increases when

0 2 4 6 8 10 12 14 16 18
0

2

4

6

8

10

12

Time

T
o
ta

l
T

h
ro

u
g
h
p
u
t

(a) Optimization interval:per flow

0 2 4 6 8 10 12 14 16 18
0

2

4

6

8

10

12

Time

T
o
ta

l
T

h
ro

u
g
h
p
u
t

(b) Optimization interval:1s

0 2 4 6 8 10 12 14 16 18
0

2

4

6

8

10

12

Time

T
o
ta

l
T

h
ro

u
g
h
p
u
t

(c) Optimization interval:5s

0 2 4 6 8 10 12 14 16 18
0

2

4

6

8

10

12

Time

T
o
ta

l
T

h
ro

u
g
h
p
u
t

(d) Optimization interval:10s

Fig. 3. Total throughput under uniform traffic matrix and different optimiza-
tion intervals.

Fig. 4. CDF of total flow completion time under non-uniform traffic matrix
and different optimization intervals.

the optimization interval increases. When optimization is per-

formed upon every flow completion, the system uses the least

time to complete. We also find that the speed of performance

degrades decreases with the increasing optimization interval.

For example, the difference between ”Per Flow” and ”T = 1”

is larger than the difference between ”T = 9” and ”T = 10”.

Intuitively, this follows some diminishing marginal utility rule.
Figure 5(a) shows the 50 percentile of total completion

time under different optimization intervals. It is clear that the

50 percentile value increases when the optimization interval

increases. This is because when optimization is performed

more frequently, the system can make better use of idle network

bandwidth. Figure 5(b) shows the difference between the 90

percentile and 10 percentile of total completion time, and

Figure 5(c) shows the variance of total completion time. They

follow the similar trend of going up as the optimization

interval increases. This is because when optimization is not

performed frequently, the system cannot make good use of

network bandwidth. Sometimes some links might be idle,

while sometimes all links make full use of bandwidth. The

difference between different cases is not compensated by re-

optimization. When the optimization interval is large, the

system shows a large variance of performance.

C. Impact of Number of Flows Per Class

Ensemble routing reduces traffic management overhead

by operating on the granularity of flow ensembles, rather

0 1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

Optimization Interval (0 means per flow)

5
0
 P

e
rc

e
n
ti
le

(a) 50 percentile of total comple-
tion time

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

4

Optimization Interval (0 means per flow)

9
0

 P
e

rc
e

n
ti
le

 −
 1

0
 P

e
n

c
e

n
ti
le

(b) Difference of 90 percentile
and 10 percentile of total comple-
tion time

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

Optimization Interval (0 means per flow)

V
a
ri
a
n
c
e

(c) Variance of total completion time

Fig. 5. Total flow completion time under non-uniform traffic matrix and
different optimization intervals.

than individual flows. However, controlling each individual

flow can make a better use of link capacities. There is a

performance gap between ensemble routing and individual

flow management. In fact, if we let each ensemble class

contain only one flow, ensemble routing can be generalized

to incorporate the individual flow management.
In the generalized form, an ensemble class can be further

split into several sub-classes where each sub-class contains

a fraction of flows in the original ensemble class. In the

extreme case, each sub-class contains only one flow. The more

sub-classes each ensemble class is split into, the better link

capacity utilization can be achieved. But more sub-classes

also introduces more computational cost. There is a tradeoff

between complexity and optimality. Through experiments we

want to explore whether splitting ensemble classes can make

a difference and if it can how big the difference is. What is

more, how well splitting ensemble classes can perform also

depends on the temporal constraint(the optimization interval).

So in our experiments we also incorporate this variable.
Each flow is generated from normal distribution N (1, 0.2)

and 100 samples of traffic matrices are used. Since each

ensemble class has 12 flows, we split each ensemble class

into 1, 2, 3, 4, 6, 12 sub classes respectively. Thus each sub-

class contains 12, 6, 4, 3, 2, 1 flows respectively. Different

optimization intervals are also used including per flow, 1s, 5s

and 10s.
Figure 6 shows CDF of total completion time when each

traffic class contains 12, 6, 4, 3, 2, 1 flows under different

optimization intervals. Intuitively, the more flows each sub-

class contains, the better VLAN assignments can be made,

and the shorter total completion time the system can achieve.

However, from the figure we can see that optimization interval

also plays an important role. In Figure 6(a) and Figure 6(b),

we find that the gap between different flow numbers per class

is not big when the optimization interval is small. This is

because when the optimization interval is small, the system

can frequently reassign VLANs to traffic classes so as to

make effective use of link capacity. The drawback of coarse-

9 10 11 12 13 14 15 16 17
0

0.2

0.4

0.6

0.8

1

Total Completion Time

N=12

N=6

N=4

N=3

N=2

N=1

(a) Optimization interval:per flow

10 11 12 13 14 15 16
0

0.2

0.4

0.6

0.8

1

Total Completion Time

N=12

N=6

N=4

N=3

N=2

N=1

(b) Optimization interval:1s

10 12 14 16 18 20 22
0

0.2

0.4

0.6

0.8

1

Total Completion Time

N=12

N=6

N=4

N=3

N=2

N=1

(c) Optimization interval:5s

12 14 16 18 20 22 24
0

0.2

0.4

0.6

0.8

1

Total Completion Time

N=12

N=6

N=4

N=3

N=2

N=1

(d) Optimization interval:10s

Fig. 6. CDF of total completion time when each traffic class contains 12,
6, 4, 3, 2, 1 flows under different optimization intervals.

grained traffic management can be compensated by frequently

reassigning of VLANs. However, from Figure 6(c) and Figure

6(d) we find that when the optimization interval is large,

the advantage of letting each traffic class contains fewer

flows becomes more obvious. For example, in Figure 6(d), the

optimization interval is 10s, we find that the total completion

time when each traffic class only contains one flow is shorter

than the total completion time when each traffic class contains

12 flows. This gap increases along with the optimization

interval.

D. Impact of Imprecise and Incomplete Traffic Matrices

In practice, traffic measurement may be imprecise and may

only be taken on a set of limited locations, such as core

switches and bottleneck links.
We now investigate the sensitivity of our algorithm with

respect to imprecise and incomplete traffic matrices. Given

an imprecise traffic matrix, our algorithm may come up

with a VLAN assignment far from optimal. Similar, given

an incomplete or partial traffic matrix, our algorithm has to

estimate missing entries first. If the estimation is far from the

reality, the VLAN assignment given by our algorithm may also

be far from the optimal one.
We conduct a series of experiments to understand how our

algorithm performs under imprecise and incomplete traffic

matrices. Intuitively, for an imprecise traffic matrix, the more

biased the traffic matrix is, the poorer performance our algo-

rithm achieves; for an incomplete traffic matrix, the further the

estimation is from the true value, the poorer performance our

algorithm achieves. Through experiment we want to explore

how big the gap is between our algorithm with imprecise or

incomplete information and our algorithm with precise and

complete information.
Note that traffic matrix estimation and completion is a

challenging topic in its own right and outside the scope of this

paper. We take a simple method of traffic matrix completion

to illustrate the robustness of our VLAN design methodology

even under such cases. More refined traffic matrix completion

algorithms will further enhance the end results.
1) Imprecise Traffic Matrices: We evaluate how our algo-

rithm performs under imprecise traffic matrices. Each flow,

or each entry in a traffic matrix is generated from normal

11.5 12 12.5 13 13.5 14 14.5
0

0.2

0.4

0.6

0.8

1

Total Completion Time

σ=0

σ=2

σ=4

σ=6

σ=8

σ=10

Fig. 7. CDF of total flow completion time under different bias level. The
bias follows a normal distribution N(0, σ), where σ denoted how imprecise
a traffic matrix is.

distribution N (1, 0.2) and some bias is introduced to traffic

matrices that the algorithm receives. The bias follows a normal

distribution N (0, σ), where σ denote how imprecise a traffic

matrix is. 100 samples of traffic matrices are used and σ is

varied from 0 to 10.
Figure 7 shows the CDF of total completion time under

different bias levels. From the figure, we find that the system

takes the least time to complete all traffic flows when there

is no bias (σ = 0). But the difference between algorithm

performance under no bias and algorithm performance under

a large bias is not large. The difference is no more than

0.5s. This means our algorithm can still perform well under

imprecise traffic matrices.
2) Incomplete Traffic Matrices: We also evaluate how our

algorithm performs under incomplete traffic matrices. Each

flow, or each entry in a traffic matrix is generated from

a normal distribution N (1, σ) and 100 samples of traffic

matrices are used. For each row in the traffic matrix, we knock

out one entry and use the average of other entries to estimate

this entry. σ is varied from 0.2 to 8.0. Intuitively, if σ is big,

each entry can be largely different from other entries, and the

estimation using average values can be very imprecise, which

consequently degrades the performance of the algorithm.
Figure 8 and Figure 9 show total completion time un-

der complete and incomplete traffic matrices with different

variances. Figure 8 shows CDF of total completion time.

We find that our algorithm under complete traffic matrices

performs better than our algorithm under incomplete traffic

matrices, but again the gap is small (less than 0.5s). Figure

9(a) shows that the 50 percentile of total completion time

under complete traffic matrices is consistently lower than that

under incomplete traffic matrices. The gap increases when σ

increases. Figure 9(b) and Figure 9(c) show the difference

of 90 percentile and 10 percentile and the variance of total

completion time. The gap increases when σ increases, but the

gap is small.
Next we knock out more than one entry for each row in

the traffic matrix and investigate the impact as the number of

unknown entries K increases. We set σ = 0.2 and the missing

entries are estimated by the average of all non-missing entry

values. Figure 10 shows the CDF of total completion time

with the number of unknown entries. When more entries are

missing (K increases), total completion time increases and

10 20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Total Completion Time

σ=0.2, complete

σ=0.2, incomplete

σ=1.0, complete

σ=1.0, incomplete

σ=2.0, complete

σ=2.0, incomplete

σ=4.0, complete

σ=4.0, incomplete

σ=6.0, complete

σ=6.0, incomplete

σ=8.0, complete

σ=8.0, incomplete

Fig. 8. CDF of total flow completion time under complete and incomplete
traffic matrices.

0.2 1 2 4 6 8
0

10

20

30

40

50

60

σ

5
0
 P

e
rc

e
n
ti
le

complete

incomplete

(a) 50 percentile of total comple-
tion time

0.2 1 2 4 6 8
0

5

10

15

20

σ

9
0
 P

e
rc

e
n
ti
le

 −
 1

0
 P

e
n
c
e
n
ti
le

complete

incomplete

(b) Difference of 90 percentile
and 10 percentile of total comple-
tion time

0.2 1 2 4 6 8
0

10

20

30

40

50

60

70

σ

V
a
ri
a
n
c
e

complete

incomplete

(c) Variance of total completion
time

Fig. 9. Total flow completion time under complete and incomplete traffic
matrices with different variances.

performance becomes worse. However, when K is not larger

than some threshold value, the performance gap is very small.
These experiment results show that our algorithm can still

achieve good performance using incomplete traffic matrices.

IV. VARIANTS OF VLAN ASSIGNMENT PROBLEM

In this section, we discuss two variants of VLAN assign-

ment problem.

A. Interaction with TCP

In the original VLAN assignment problem (3), estimated

traffic matrix T is given. In practice, flow rates are usually

adjusted by TCP protocol. Thus we consider the interaction

between VLAN assignment and TCP congestion control. We

11 11.5 12 12.5 13 13.5 14
0

0.2

0.4

0.6

0.8

1

Total Completion Time

K=0

K=1

K=2

K=4

K=8

Fig. 10. CDF of total flow completion time with the number of unknown
entries.

predict the traffic sending rate matrix T given a VLAN assign-

ment x by solving the following Network Utility Maximization

problem [18]:

JPx : max U(r) (23)

s.t.
∑

h:v=x(h)

P (v)T (h) = r(v), ∀v ∈ V (24)

r =
∑

v∈V

r(v) ≤ C, (25)

T < 0, (26)

where U(·) denotes the network utility function. Here the

choices of the utility function capture different congestion

control algorithms [18], including proportional fairness, max-

min fairness and more general objectives with fairness con-

siderations.
For any x ∈ X , after solving problem JPx, we obtain

corresponding optimal value of r∗ and T ∗. Then we can com-

pute the value Φx. The design of Markov chain, perturbation

analysis of Markov chain and mixing time of Markov chain are

very similar to those of original VLAN assignment problem.

For example, the impacts of imperfect and incomplete traffic

matrices can be modeled as estimation errors of traffic rates

and can be studied by the perturbation analysis of Markov

chain.

B. QoS Considerations

In the original VLAN assignment problem (3), each routing

class h ∈ H can choose any one VLAN v ∈ V . However, in

practice, due to QoS considerations, the available VLAN set

for each routing class h is limited. For example, a routing class

h may want to choose only those VLANs providing it one-

hop paths instead of paths with long hops due to some delay

considerations. These QoS considerations can be modeled as

follows: for each routing class h ∈ H, it can only be assigned

to a subset of VLANs, denoted by Sh ⊆ V . VLANs belonging

to Sh satisfy quality of service considerations for routing

class h. Corresponding design of Markov chain, perturbation

analysis of Markov chain and mixing time of Markov chain are

very similar to those of original VLAN assignment problem.

V. CONCLUSIONS

In this paper, we study a key component of intra-data-

center traffic engineering with ensemble routing: VLAN as-

signment schemes. By Markov approximation framework, we

design a VLAN assignment scheme that achieve efficient load-

balancing and close-to-minimal network cost for arbitrary net-

work topology and arbitrary cost functions. Our scheme also

allows parallel and distributed implementation. Key properties

of this scheme are studied analytically, including performance

optimality, perturbation bounds with estimation errors and

mixing time of Markov chain. We characterize the optimality

gap due to the estimation errors of flow rates, where the

upper bounds of optimality gap increases linearly with the

maximum flow estimation errors. We also obtain the bounds

on mixing time, which exhibits an interesting phase transition

phenomenon with some threshold value of β. We further

compare our mixing time with the fastest mixing time and

give out some bounds. We conduct performance evaluations

on our scheme with many practical concerns and find that our

scheme achieves efficient load balancing and shows desirable

scalability and robustness. It can be tuned to meet different

temporal constraints, incorporate fine-grained traffic manage-

ment, overcome traffic measurement limitations, and tolerate

imprecise and incomplete traffic matrices.

ACKNOWLEDGMENT

We thank Mike Schlansker and Yoshio Turner from HP

Labs and Jennifer Rexford from Princeton University for many

fruitful discussions on the topic, and a grant from the HP

University Research Program. Minghua Chen’ research was

partially supported by a China 973 Program (Project No.

2012CB315904), the General Research Fund (Project No.

411209, 411010, and 411011) and an Area of Excellence

Grant (Project No. AoE/E-02/08) both established under the

University Grant Committee of the Hong Kong SAR, China,

and two gift grants from Microsoft and Cisco.

REFERENCES

[1] C. Kim, M. Caesar, and J. Rexford, “Floodless in SEATTLE: A scalable
ethernet architecture for large enterprises,” in Proceedings of ACM

SIGCOMM, 2008.
[2] A. Greenberg, J. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,

D. Maltz, P. Patel, and S. Sengupta, “VL2: A Scalable and Flexible
Data Center Network,” in Proceedings of ACM SIGCOMM, 2009.

[3] J. Mudigonda, P. Yalagandula, M. Al-Fares, and J. Mogul, “Spain:
Cots data-center ethernet for multipathing over arbitrary topologies,”
in Proceedings of the 7th USENIX, 2010.

[4] M. Schlansker, Y. Turner, J. Tourrilhes, and A. Karp, “Ensemble routing
for datacenter networks,” in Proceedings of the 6th ACM/IEEE Sympo-
sium on Architectures for Networking and Communications Systems,
2010.

[5] M. Yu, J. Rexford, X. Sun, S. Rao, and N. Feamster, “A survey of
virtual lan usage in campus networks,” IEEE Communications Magazine,
vol. 49, no. 7, pp. 98–103, 2011.

[6] X. Sun, Y. Sung, S. Krothapalli, and S. Rao, “A systematic approach
for evolving vlan designs,” in Proceedings of IEEE INFOCOM, 2010.

[7] R. Diestel, Graph Theory. Springer Verlag, 2006.
[8] W. Wu, Y. Turner, and M. Schlansker, “Routing optimization for ensem-

ble routing,” in Proceedings of the 2011 ACM/IEEE Seventh Symposium

on Architectures for Networking and Communications Systems, 2011.
[9] W. Jiang, Y. Turner, J. Tourrilhes, and M. Schlansker, “Controlling traffic

ensembles in open cirrus,” HP Technique Report, 2011.
[10] M. Chen and S. Liew and Z. Shao and C. Kai, “Markov approxima-

tion for combinatorial network optimization,” in Proceedings of IEEE

INFOCOM, 2010.
[11] Z. Shao, X. Jin, W. Jiang, M. Chen, and M. Chiang, “Intra-Data-Center

Traffic Engineering with Ensemble Routing,” Technical Report, 2012,
available at http://home.ie.cuhk.edu.hk/∼zyshao/ensemble.pdf.

[12] J. Rexford, “Route optimization in ip networks,” Handbook of Optimiza-

tion in Telecommunications, pp. 679–700, 2006.
[13] J. He, M. Bresler, M. Chiang, and J. Rexford, “Towards robust

multi-layer traffic engineering: Optimization of congestion control and
routing,” IEEE Journal on Selected Areas in Communications(JSAC),
vol. 25, no. 5, pp. 868–880, 2007.

[14] S. Zhang, Z. Shao, and M. Chen, “Optimal Distributed P2P Streaming
under Node Degree Bounds,” in Proceedings of IEEE ICNP, 2010.

[15] P. Diaconis and D. Stroock, “Geometric bounds for eigenvalues of
Markov chains,” The Annals of Applied Probability, pp. 36–61, 1991.

[16] R. Bubley and M. Dyer, “Path coupling: A technique for proving rapid
mixing in markov chains,” in Proceedings of IEEE FOCS, 1997, pp.
223–231.

[17] S. Boyd, P. Diaconis, and L. Xiao, “Fastest mixing markov chain on a
graph,” SIAM review, vol. 46, no. 4, pp. 667–689, 2004.

[18] M. Chiang, S. Low, A. Calderbank, and J. Doyle, “Layering as optimiza-
tion decomposition: A mathematical theory of network architectures,”
Proceedings of the IEEE, vol. 95, no. 1, pp. 255–312, 2007.

