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Abstract
Efficient construction of checkpoints/snapshots
is a critical tool for training and diagnosing deep
learning models. In this paper, we propose a lossy
compression scheme for checkpoint constructions
(called LC-Checkpoint). LC-Checkpoint simul-
taneously maximizes the compression rate and
optimizes the recovery speed, under the assump-
tion that SGD is used to train the model. LC-
Checkpoint uses quantization and priority promo-
tion to store the most crucial information for SGD
to recover, and then uses a Huffman coding to
leverage the non-uniform distribution of the gra-
dient scales. Our extensive experiments show that
LC-Checkpoint achieves a compression rate up
to 28× and recovery speedup up to 5.77× over a
state-of-the-art algorithm (SCAR).

1. Introduction
Efficient construction of checkpoints (snapshots) has been
increasingly important to deep learning research. In the
arms race of developing more accurate models, researchers
utilize heavier computing infrastructure and develop deeper
and larger models. Without proper infrastructure support,
the research process inevitably becomes fragile. For exam-
ple, distributed computation fails from time to time, leading
to the excessive need to re-train models (Qiao et al., 2018b).
Diagnosing deep learning models also evolves to a complex
procedure partly because that the community has a better
understanding of deep learning models and produces more
rules for “debugging” them. Some common errors include
gradient explosion (Goodfellow et al., 2016), “divide by
zero” (Ioffe & Szegedy, 2015), and dead activation. This
calls for the need to construct “breakpoints,” resembling
those used in debugging computer programs, so that re-
searchers can conveniently jump to the state right before the
model “crashes” in the training.
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Producing checkpoints frequently enables failed training
process to restart with minimum wasted time, and serves
as breakpoints for debugging models. So far the standard
practice of constructing checkpoints is primitive. The most
common practice is to save the model state directly, counting
on that the backend system is sufficiently robust so that
this operation does not become a bottleneck (Baylor et al.,
2017). Attempts of partially storing model states are also
examined (Qiao et al., 2018b) but these works usually focus
on recovery speed, instead of directly tackling system issues.

The most pronounced technical challenge here is that deep
models are usually large, so producing frequent checkpoints
creates unmanageable burdens to both I/O and storage, even
under modern distributed platforms (Abadi et al., 2016; Li
et al., 2014; Low et al., 2012). Therefore, this leads to our
question:

Research Q: How can we compress model checkpoints?

We specifically aim to design a lossy compressing scheme,
addressing two criteria simultaneously. First, like standard
compression problems, we need to maximize the compres-
sion rate. Second, the scheme needs to be optimized for the
downstream application of training. When a model restarts
from our lossy checkpoints, it needs to efficiently resume to
the most recent state (e.g., restart from a failed process or
reach the state preceding the crash).

Compression of model states is a new technical problem that
requires addressing cross-cutting constraints from informa-
tion theory, learning algorithm, and system design. We need
to leverage statistical patterns encoded in the model state and
factor in how the model states interact with a learning algo-
rithm (more specifically, stochastic gradient type algorithms
in the deep learning setting). This means neither standard
lossy compression algorithms nor recently developed model
compression algorithms (Han et al., 2015a; Courbariaux
et al., 2015; Hong et al., 2016; Leng et al., 2018; Lin et al.,
2016) directly work in our setting. Standard lossy compres-
sion algorithms aim to minimize reconstruction error but
our end goal is to enable a learning algorithm to “quickly
recover.” Model compression techniques aim to transform
a (static) model into a simpler one while ensuring the fore-
casts are not perturbed much whereas in our setting we need
a reliable coding scheme that functions well throughout the
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entire dynamic process of learning, which is an orthogo-
nal and perhaps more challenging goal. In addition, our
algorithm must be efficient and scalable so that it can be
executed frequently.

Our solution. To achieve our aims, we focus on a delta-
encoding scheme (Mogul et al., 1997), tracking only the
information on the difference between two checkpoints. Un-
der this scheme, we examine whether we can cut the least
useful information (with respect to training) from the model
state, and ensure that the remaining information is amenable
for compression. A perhaps surprising message here is that
`2-norm reconstruction error for the “delta” appears to be
an ineffective metric for minimizing the recovery time. In-
stead, our algorithm first removes all the parameters with
inconsequential updates, and then quantizes the remain-
der information. These strategies resemble those used in
distributed training with the goal of minimizing communi-
cation cost (Alistarh et al., 2017). After we obtain the most
significant information for portion of parameter updates, we
represent them in suitable format and apply a Huffman cod-
ing to further compress these bits, so that the compression
rate can be at the information theoretic limit. This strategy
resembles recent techniques for model compression (Han
et al., 2015a; Wu et al., 2016; Park et al., 2017; Zhou et al.,
2017; Rastegari et al., 2016).

The contribution of this paper includes:

• Proposal of a fundamental research question on com-
pressing model states for training recovery.

• Characterization of a family of compression schemes
that can efficiently track the learning process, based on
a stylized model we develop.

• Design of a lossy coding scheme with high-
compression rate that integrates both classical com-
pression techniques and recent ones developed for dis-
tributed learning and model compression.

• Optimization of training systems that minimizes the
overhead of producing checkpoints on the fly.

Our extensive evaluation demonstrates that by simultane-
ously leveraging techniques from distributed training and
model compression, our algorithm delivers a solution (called
LC-Checkpoint, LC refers to Lossy Compression) with
a compression rate of up to 28x and superior recovering
time—achieving up to 5.77× recovery speedup over a state-
of-the-art algorithm (SCAR).

2. Our approach
We now describe our compression framework. We introduce
a stylized model for the learning process to facilitate the
analysis of the system design trade-off. Then we explain our
design principles, determined by both the stylized model

and our extensive experiments.

Our model. A “high-dimensional” vector u ∈ Rn repre-
sents the model state. An iterative algorithm (e.g., stochastic
gradient descent) is used to gradually move the model state
vector u toward a local optimal point u∗. Let ut be the
model state at the t-th round. In our stylized model, we
assume ut performs a (drifted) random walk that converges
to u∗. Specifically, we use the following process to model
ui’s trajectory. Let L = ‖u0 − u∗‖.

ut+1 = u∗ + η(ut − u∗) + εt, (1)

where η and L jointly model the convergence rate of the
algorithm, and εt is a random noise component to reflect
the stochastic nature of SGD. When η is set to be a small
constant, the model characterizes those algorithms that have
linear convergence rate. When η = (1− 1/L), this model
characterizes those algorithms whose convergence rates are
1 − 1/t (Boyd & Vandenberghe, 2004). While our model
does not captures the detail of many SGD algorithms, be-
cause different SGD algorithms have different convergence
rate, designing a unifying model that highlights design trade-
offs requires us to make simplifying assumptions.

Our design principles. We next describe our design prin-
ciples.

P1. Minimize irritation to SGD. When we design lossy
compression scheme, a portion of information is inevitably
lost, causing performance degradation to a learning algo-
rithm. We find that we should not simply use `2 recon-
struction error to measure degradation of SGD. This can
be best illustrated by the stylized model. For simplicity,
let u∗ = 0, so ut+1 = ut − ((1− η)ut + εt). The delta
term we want to compress is ((1− η)ut + εt). When we
use a lossy compression, it corresponds to adding an ad-
ditional noise term that is a function of ut and εt. So
with the compression scheme, the new learning process
becomes ut+1 = ut − ((1− η)ut + εt + f(ut, εt)). Ob-
serving that as long as IE[f(ut, εt) | ut, εt] = 0, and
Var(f(ut, εt) | ut, εt) is dominated (smaller than) by
Var(εt), then the convergence quality remains unchanged,
by standard results from stochastic approximation (Lai,
2009; Kushner & Yin, 2003).

There are many constructs that satisfy the expectation and
variance constraints. Let us consider an example of keeping
the most significant bit of ((1− η)ut + εt) by using stan-
dard randomized rounding (Alistarh et al., 2017). Because
of the nature of the rounding algorithm, the expectation
is 0. In addition, because the most significant bit is kept,
the information loss in rounding will not be greater than
‖ ((1− η)ut + εt) ‖2 = O(std(εt)) under a mild assump-
tion that εt’s standard deviation also scales proportionally to
‖ut‖ over time. Therefore, this rounding scheme does not
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affect the performance of the training algorithm. In general,
the 1-bit encoding is a special case of quantization. A wide
family of quantization schemes will satisfy the expectation
and variance constraint. Our algorithm will explore this
trade-off.

Note also when we minimize `2 reconstruction error, this
corresponds to keeping top-k heaviest entries in ut+1 − ut.

P2. Maximize redundancies in residual information. Our
compression scheme also needs to ensure the information
we keep exhibits large redundancy, as measured by entropy.
This will enable us to use traditional coding schemes such
as Huffman code to compress the data at the information
theoretic limit.

The interplay between P1 and P2 highlights the unique struc-
ture of our compression problem. This can be best illustrated
by a compression scheme called TOPN. This compression
scheme keeps the largest elements in δt. We observe (i)
while this scheme minimizes `2 reconstruction error, it does
not have superior recovery time. Many other compression
schemes that possess the aforementioned properties recover
equally fast, as suggested by our stylized model. (ii) It is dif-
ficult to perform compression for the TOPN scheme. TOPN
scheme usually needs to track 10% of all the entries in δt
to be effective. The overhead of tracking the locations of
these elements is surprisingly high. This is because in part
that the vector is not sufficiently sparse so sparse matrix
representation does not help.

Our solution, on the other hand, carefully complies P1 and
circumvents the need to track the locations of the entries
we keep and thus achieves significantly higher compression
rate.

P3. Do not use random projections and/or sketches. No-
tably, we discover that sketch-based randomized projection
techniques (e.g., Woodruff et al. (2014)) harm the compres-
sion. Roughly speaking, sketches compress information
by projecting multiple numbers into one cell. While this
could speed up query time, it only irritates the gradient de-
scent algorithm in our setting. Consider a toy example in
which ut ∈ R2 and the optimal point u∗ = (0, 10). Let
ut = (5, 5) be the current state so the gradient is along the
direction (−1, 1). When we apply sketches (say CountMin
sketches), it collapses the direction (−1, 1) into a single
point 0. When we make a query, the gradients for both
coordinates are incorrect. Sketches are more useful when
the entries in the gradient vector are heterogeneous and
queries need to be answered at “line rate” (e.g., do not slow
down the training Ivkin et al. (2019)). Here, when a model
needs to be recovered from a checkpoint, the job is less
time-sensitive. Therefore, even we face heterogeneous pa-
rameters, it is more effective to carefully disentangle crucial
information from inconsequential ones than using arbitrary

Algorithm 1 LC-CHECKPOINT-BASED SGD
Input: u∗, u0, η

1: Initialize ũ0 = u0.
2: for t = 1 to T do
3: Update model state: ut = u∗ + η(ut−1 − u∗) + ε
4: Compute distance: δt = ut − ũt−1

5: Quantize δt: δ̃t = QUANTIZE(δt)
6: Compress δ̃t by Huffman coding and save to disk
7: Update checkpoint state: ũt = ũt−1 + δ̃t
8: end for

Output: uT , {δ̃t | t ∈ [T ]}

random projections.

3. LC-Checkpoint-based SGD
We now describe our solution LC-Checkpoint (LC refers to
Lossy Compression). See Figure 1 for a working example
and Algorithm 1 for a workflow. For simplicity, we assume
that our system maintains a checkpoint δ̃t for each iteration.
We slightly abuse δt to refer to both the compressed data
and the real vector it represents. It is straightforward to
downsample our operations to construct a checkpoint every
k-iterations. Our solution consists of two major compo-
nents.

C1. Approximate tracking by delta-coding. At each
step, our system maintains an approximation ũt of the
ground-truth state. We simply set ũt = u0 +

∑
i≤t δ̃i,

where u0 is the initial state of the model. Our system con-
tinuously maintains and updates ũt at the background (line
7 in Algorithm 1). Our major compression task is to prop-
erly track the “delta” between the approximate state and
ground-truth. Specifically, the compression task for the t-th
iteration is δt = ut − ũt−1. See 3© in Figure 1.

C2. Quantization and Huffman coding. This compo-
nent compresses δt through two steps, Step 1. Two-stage
quantization. We first perform an exponent-based quantiza-
tion, and then a priority promotion operation. This opera-
tion intelligently drops inconsequential information between
two consecutive states. Step 2. Lossless compression by
Huffman. Finally, the quantized distance vector is further
compressed using Huffman coding.

One can see that to reconstruct the model state at iteration
t from the checkpoints, we may simply compute ut =
u0 +

∑t
i=1 δ̃t.

In what follows, Section 3.1 discusses C2 and Section 3.2
discusses additional system-level optimizations.
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Figure 1. LC-Checkpoint overview.

3.1. Quantization and Huffman coding

3.1.1. TWO-STAGE QUANTIZATION

LC-Checkpoint employs a novel two-stage pipeline to quan-
tize δt, which consists of two main sub-steps: exponent-
based quantization and priority promotion.

Exponent-based Quantization. Recall that a floating
point v is represented by v = (−1)s ×m× 2e, where s is
the sign, m is the mantissa, and e is the exponent. Recall
that δt = ut − ũt−1 ∈ Rn is a high-dimensional vector we
aim to encode. Our exponent-based quantization works as
follows: first, it partitions entries in δ into multiple buckets
according to e and s, i.e., it assigns the elements with iden-
tical exponents and signs to the same bucket. Our crucial
observation from extensive experiments is that entries in
ut usually drift towards the same direction, so δt typically
have the same sign. Next, our algorithm represents each
bucket by the average of maximum and minimum values in
the bucket.

Figure 1 2© shows an example, in which, δt is quantized into
five buckets (marked with five different colors). All entries
in each bucket are then represented by a unique value.

Indexing k buckets requires log2 k bits. Because δt consists
of n floating points, each of which uses b (e.g., b ∈ {32, 64})
bits, the compression rate is r = nb

n log2 k+kb
.

For example, in Figure 1, δ has 10 elements (i.e., n = 10),

each of which is represented by a single-precision floating
point (i.e., b = 32). Thus, the original δ has nb, i.e., 320 bits
in total. Exponent-based quantization uses 5 buckets (i.e.,
k = 5). Thus, after quantization, δ has (10×log 5+5×32 =
190) bits. Therefore, the compressing rate (r) is 1.68 (i.e.,
320/190).

It is critical to control the number of buckets k to achieve an
optimal compression ratio. Fortunately, the exponent-based
bucketing can control k ≤ 29 for single-precision floating
point elements, and control k ≤ 212 for double-precision.
1 Our evaluation results (Section 4.3) confirm that usually
k < 25 suffices. Figure 2(a) plots the distribution of all
elements’ exponent parts in the last convolutional layer of
AlexNet.

Priority Promotion. We further improve the compres-
sion ratio by limiting the number of buckets with a priority
promotion approach. Our crucial observation is that when
δt,i is excessively close to 0 (i.e., ũi,t−1 is close ui,t), it is
more effective to batch the updates (i.e., do not update the
i-th entry of δt until it becomes substantial). Note also this
is conceptually different from minimizing construction er-
rors. Minimizing construction errors corresponds to exactly
keeping track of the heaviest entries in δt, whereas we both
remove excessively small entries and quantize large entries

1Single-precision floating point numbers use 8 bits to store
e, and together with a sign bit—that is why k ≤ 29. Similarly,
double-precision numbers use 11 bits to store e.
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Figure 2. The distribution of all elements’ exponent parts in the last convolutional layer of AlexNet. When e equals −127, the
element value is 0. The x-axis denotes the exponent part value, and the y-axis indicates the count of elements with this value.

(as done in the previous step). Specifically, we propose x-bit
priority promotion. It keeps 2x − 1 buckets with larger e
only and merges the rest buckets into one with a unique
value of 0. In other words, priority promotion updates w̃i

with a larger distance to wi with a higher priority. It limits
the index of buckets within x bits.

Figure 1 (Priority Promotion) uses 2-bit priority promotion
to control the number of buckets under 4. It merges the
green and purple buckets into a red one that is represented
by a value 0. Indexing these buckets only needs 2 bits.
Figure 2(b) gives a real example of 3-bit priority promotion
for the last convolutional layer in AlexNet.

3.1.2. HUFFMAN CODING

Finally, observing the number of elements in each bucket
is highly non-uniform in most learning processes, we use
Huffman coding (Van Leeuwen, 1976) to further compress
the bucket. For example, Figure 2(a) plots the distribution of
all elements’ exponent parts in the last convolutional layer
of AlexNet. This distribution shows a skewed behavior,

thus more suitable for Huffman coding. Our crucial ob-
servation is that priority promotion further aggravates the
skewness of this distribution (Figure 2(b)), thus marrying
quantization with Huffman coding produces more than “sum
of parts” benefits. Our later evaluation validates it (Sec-
tion 4.3).

3.2. System Optimizations

LC-Checkpoint also comprises several novel system-level
optimizations as follows:

• Asynchronous Execution: Because only the first step
of LC-Checkpoint depends on the model state, the rest
steps can run simultaneously with the next iteration of
SGD computation. This asynchronous (non-blocking)

execution significantly reduces the checkpoint overhead,
and mitigates the blocking of model execution.

• Checkpoint Merging: To further reduce the recovery
time, LC-Checkpoint employs a helper process to merge
multiple checkpoints into super-step ones, periodically.
In case of any system crash, LC-Checkpoint uses these
super-step checkpoints for recovery.

• Huffman Code Table Caching:
The number of buckets may stay the same from one it-
eration to another, specifically after priority promotion.
Thus, it is possible to reuse the Huffman code table (with
only a simple sort of buckets according to the number of
entries in each bucket) among different iterations without
any rebuilding. LC-Checkpoint comprises a lightweight
cache to store the Huffman code table for each buckets
count.

4. Experiments
This section evaluates LC-Checkpoint on four typical ML
applications with three benchmark datasets, and compares
it with previous efforts (SCAR Qiao et al. (2018b) and a
TOPN mechanism as mentioned in Section 2) on recovery
(rework) cost, compression ratio, and execution overhead,
demonstrating the superiority of LC-Checkpoint.

4.1. Methodology

Evaluation Objective: This evaluation has four main ob-
jectives: (1) comparing LC-Checkpoint’ recovery (rework)
cost with previous work; (2) evaluating the compression
benefits brought by different approaches mentioned before;
(3) specifically, validating the effectiveness of priority pro-
motion; (4) confirming that LC-Checkpoint incurs low over-
head by an experiment case study. Our work is mainly
compared with two state-of-the-art efforts: SCAR (Qiao
et al., 2018b) and a TOPN mechanism. SCAR partitions
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Figure 3. Rework cost comparison among LC-Checkpoint, SCAR, and TOPN. The x-axis indicates the ratio of the compressed
checkpoint size over the full checkpoint size. The y-axis shows the rework iterations. The error bars indicate 95% confidence intervals,
calculated by repeating each trial 50 times.

the parameters and updates one partition in each iteration
to reduce the checkpoint size. The TOPN mechanism only
updates the parameters with the top-n largest distances to
the previous iteration. The TOPN checkpoint is stored in a
compressed sparse row (CSR) format.

ML Applications and Datasets: LC-Checkpoint is
evaluated on four typical ML applications: Multino-
mial Logistic Regression (MLR), LeNet-5 (Lenet) (Le-
Cun et al., 1998), AlexNet (Krizhevsky et al., 2012)
and Matrix Factorization (MF). The first three applica-
tions are trained on MNIST (LeCun et al., 1998) and
FashionMNIST (Xiao et al., 2017) datasets. The last
one, MF is trained on Jester (Goldberg et al., 2001) and
MovieLens10M (Harper & Konstan, 2015).

Platforms and Evaluation Configurations: Our experi-
ments are conducted on a multi-core server with an Intel
Xeon Gold 6138 Skylake CPU with 40 cores, each running
at 2.0 GHz, and 192 GB DDR4 memory. The training is per-
formed on a Tesla P100 GPU with 16GB High-bandwidth
Memory (HBM).

4.2. Recovery/Rework Cost Comparison

This section evaluates the recovery (or rework) cost of LC-
Checkpoint, particularly comparing it to SCAR (Qiao et al.,
2018b) and a TOPN mechanism2.

2Rework (or recovery) cost is defined as the number of itera-
tions from ũt to ut. All methods share the same SGD computation
cost for each iteration.

To evaluate their rework costs fairly, we use the same check-
point size (update size) for all three methods. Two check-
point sizes are tested: 5% and 10% of the full checkpoint
size3. These checkpoint sizes can be set directly for SCAR
and TOPN. However, LC-Checkpoint’s size is determined
by the data distribution and thus changed dynamically. To
address this issue, LC-Checkpoint employs 2-bit and 3-bit
priority promotion that control its checkpoint size at 5%
and 10%. Figure 4 reports more details of LC-Checkpoint’s
checkpoint size information.

Figure 3 compares the rework cost of three methods, SCAR,
TOPN, and LC-Checkpoint, showing that LC-Checkpoint
incurs the lowest rework cost for all ML applications and
datasets among them. For the 5% checkpoint test case,
LC-Checkpoint outperforms SCAR by 2.88×-5.77×, and
TOPN by 2.17×-4.06×, respectively. With 10% checkpoint
size, LC-Checkpoint outperforms SCAR by 1.9×-4.82×,
and outperforms TOPN by 1.52×-2.17×, respectively.

In addition, comparing two checkpoint sizes (5% v.s. 10%),
LC-Checkpoint results in more stable rework cost as the
checkpoint size decreasing. For example, decreasing the
checkpoint size from 10% to 5%, LC-Checkpoint has a
negligible rework cost increase on LeNet with MNIST
(Figure 3(b)) and AlexNet (Figure 3(c), 3(g)). It does not
have any rework cost change for other cases. In contrast,
SCAR and TOPN increase 1.6× rework cost on average as
the checkpoint size changing from 10% to 5%.

3Full checkpoint stores all model parameters after a specific
iteration.
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Figure 4. The compression ratio with different compression methods. The x-axis denotes the bits count used in priority promotion,
and the y-axis is the ratio of the checkpoint size after compression over the one before compression. E, P, H denote “exponent-base
quantization”, “priority promotion”, and “Huffman coding”, respectively.

4.3. LC-Checkpoint Compression Effect Breakdown

This section evaluates and analyzes the compression ef-
fect of different approaches mentioned before, exponent-
base quantization (E), priority promotion (P), and Huffman
coding (H). Figure 4 reports the compression ratios with
2-bit and 3-bit priority promotion. With all compression
approaches, the ultimate checkpoint sizes (E+P+H) are all
below 5% with 2-bits, and below 10% with 3-bits over the
uncompressed full checkpoint, i.e., the compression rates
are above 20× and 10×, respectively.

Exponent-base quantization yields a compression ratio of
85% on average. It proves that the exponent parts of all pa-
rameters in δ span across a small range of all values that can
be represented by single precision floating-point. 15% also
indicates that the bucket number k < 25, because the aver-
age bucket number can be estimated as k = 2(32×15%=4.8),
where 32 is the width of single precision floating-point. Pri-
ority promotion brings 9.26% extra compression ratio on
average for 2-bit and 6.23% for 3-bit. For most cases, pri-
ority promotion with smaller bits yields more benefits for
Huffman coding except MF (Figure 4(d), 4(h)). This is
because MF’s parameters are sparse, thus Huffman coding
can reach a sufficient compression ratio without aggressive
priority promotion. Across all models (and datasets), Huff-
man coding brings 2% extra compression ratio with 2-bits
priority promotion, and 1.6% with 3-bits one on average.

4.4. The Effectiveness of Priority Promotion

This section further discusses the effectiveness of priority
promotion. It aims to prove that priority promotion is able
to save the majority of high priority parameters. We prove
it by showing the exponent buckets result in a larger impact
on the model state when their represented unique values are
further from 0 (i.e., e is larger).

Assume δ is calculated from one state uθ to another for m
iterations. Then, δim is created by setting the parameters in
the i-th exponent bucket to 0. The ground truth is calculated
as Vgt = L(uθ + δm) where L(x) denotes the loss function.
Then the relative error is calculated as:

Eim =

∥∥Vgt − L(uθ + δim)
∥∥
2

Vgt
(2)

Figure 5 reports the result of MLR with m = 10n, n ∈ [1, 6].
Both datasets (MNIST and FashionMNIST) on varied m
prove that the elements in the buckets with the top-n largest
distance impact more on the model (denotes as a higher
relative error when the bucket represented value is set to 0).

In addition, it is possible to preserve all important buckets
with only a small number of index bits. For example, using
2-bit priority promotion (4 buckets with the last bucket
storing 0) can easily preserve the most important buckets,
and using 3-bit (8 buckets) can preserve all effective buckets.
This result explains why priority promotion can compress
the checkpoint with negligible accuracy loss.
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(a) MLR on MNIST.

(b) MLR on FashionMNIST.

Figure 5. Evaluation on the priority of each exponent bucket.
The x-axis denotes the id of the exponent bucket that is deleted.
The y-axis shows the relative error to the ground-truth.

Figure 6. MF on MovieLens25M. The x-axis denotes the iteration
and the y-axis is the model’s RMSE (Root Mean Square Error).

4.5. A Case Study on LC-Checkpoint’s Overhead

This section evaluates LC-Checkpoint’s execution overhead
and overall impact on the model execution using a case
study, i.e., training MF on MovieLens25M (Harper & Kon-
stan, 2015) dataset. Each iteration costs 91 seconds on av-
erage. LC-Checkpoint employs 3-bit priority promotion,
resulting in a checkpoint size below 10% (of the uncom-
pressed full checkpoint size). Default approach creates a
full checkpoint every 10 iterations. A failure is triggered at
the 7-th iteration.

Figure 6 reports the result. LC-Checkpoint only incurs one
extra iteration than the normal execution without any failure
to convergence, and saves 6 iterations compared to the full
checkpoint method, i.e., saving 546 seconds execution time.
LC-Checkpoint introduces only less than 4 seconds (i.e.,

around 4%) overhead for each iteration, which is negligible.

5. Related Work
Fault-tolerance is a key fundamental support for ML sys-
tems. Li et al. (Li et al., 2014) propose a runtime parameter
replication approach for recovery. Tensorflow (Abadi et al.,
2016) employs periodic checkpoint to save the model state.
Other efforts like (Harlap et al., 2017; Qiao et al., 2018a)
aim to support strong consistency semantics. In contrast,
our work relaxes the consistency guarantee of checkpoint
based on the self-correcting behavior of ML applications.
With a set of lossy compression mechanisms, our work can
afford high frequent checkpoints, resulting in low rework
cost and fine-grained model state recovery. Similarly, Qiao
et al. (Qiao et al., 2018b) also propose a fault-tolerant solu-
tion (SCAR in our evaluation) based on weak consistency by
partially updating parameters. SCAR is potential to store re-
dundant information during checkpointing according to our
evaluation, and our work aims to eliminate such redundancy
by selectively saving the distance between two states.

Model compression has been proposed to reduce model
storage space and accelerate model execution time, simulta-
neously. Weight pruning and weight quantization are two
important categories of model compression.

Some popular weight pruning techniques closely related
to our work are summarized as follows. Guo et al. (Guo
et al., 2016) present a dynamic network surgery approach
with on-the-fly connection pruning to reducing the network
complexity. Dai et al. (Dai et al., 2019) combine the growth
and the pruning phases in training to generate compact DNN
architectures. Han et al. (Han et al., 2015b) design Deep
Compression, a model compression approach by combining
pruning, quantization, and Huffman coding. Mao et al. (Mao
et al., 2017) carefully explore the impact of varied pruning
granularity on model accuracy and propose a coarse-grained
weight pruning approach. All effort above aims to prune
model weights without compromising accuracy. Different
from them, our work eliminates the redundancy between two
checkpoints and reduces the rework cost during recovery by
designing a reliable coding scheme working throughout the
entire dynamic process of learning.

Weight quantization is also widely used for model compres-
sion. BinaryConnect (Courbariaux et al., 2015) introduces
the binary weight for replacing multiplication by addition
and subtraction. Binarized Neural Networks (Courbariaux
et al., 2016) also use binary weights and activations to ac-
celerate computation. Park et al. (Park et al., 2017) propose
a clustering method based on weighted entropy for weight
quantization. Leng et al. (Leng et al., 2018) formulate quan-
tization as an optimization problem and solve it by ADMM.
Our approach also employs quantization to reduce the bits of
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parameters by designing a novel exponent-based quantiza-
tion technique. Moreover, our approach emphasizes filtering
the parameters with a new priority promotion method.

6. Conclusion and Future Work
This paper presents LC-Checkpoint, the first checkpoint
scheme based on lossy compression to achieve the maximal
compression rate and efficient recovery simultaneously. It
employs a novel two-stage quantization method consisting
of exponent-based quantization and priority promotion to
identify and store the most critical information for SGD
to recover, and leverages Huffman coding to further ben-
efit from the non-uniform distribution of gradient scales.
Our evaluation demonstrates that LC-Checkpoint achieves
a compression rate up to 28× and recovery speedup up to
5.77× over the state-of-the-art algorithm (SCAR).

In the future, we plan to generalize LC-Checkpoint by re-
laxing the assumption of SGD and equipping it with the
capability of selecting checkpoint compression rates dynam-
ically according to model and data changes.
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