
Hidden Markov Model with Parameter-Optimized
K-Means Clustering for Handwriting Recognition

Weijie Su
School of Mathematical Sciences
Peking University, Beijing, China

suweijie444@gmail.com

Xin Jin
Department of Computer Science
Peking University, Beijing, China

jinxin@net.pku.edu.cn

Abstract—Handwriting recognition is a main topic of Optical
Character Recognition (OCR), which has a very wide application
area. Hidden Markov model is a popular model for handwriting
recognition because of its effectiveness and robustness. In this
paper, we propose a hidden Markov model with parameter-
optimized k-means clustering for handwriting recognition. We
explore two deep features of the images of characters, thus
significantly boosting the effectiveness of k-means clustering. The
experiments show that our model largely increases the average
accuracy of HMM with k-means clustering to 83.5% when the
number of clusters is 3000.

Index Terms—OCR; HMM; k-means; clustering;

I. INTRODUCTION

Optical Character Recognition (OCR) is a special type of
pattern recognition, which aims at mining pattern information
through computer, statistics and computational mathematics
methods. Handwriting recognition is a main topic of OCR.
It can be applied to a wide area and attracts attentions both
from academia and industry. Although there are lots of works
have studied this topic, the problem is still not perfectly solved
due to its complexity. Typical methods include Hidden Markov
Model (HMM), Markov Random Field (MRF), Support Vector
Machine (SVM) and Max-Margin [4][5][2][6]. Among these
models, HMM is a popular one because of its effectiveness
and robustness [3].

Typically, a handwriting character is represented by a m×n
binary matrix after segmented. In HMM, the real state is
the character the matrix stands for. However, because the
total possible number of different m × n binary matrices is
2mn, which is too large compared to learning samples, we
cannot directly regard every matrix as a observation state. We
should firstly cluster the matrices and then regard the clusters
as hidden states. Most previous works think that k-means
is not a good clustering method in this problem. However,
through deeply analyzing the problem, we find that k-means
can improve to be an excellent clustering method for the
problem.

An m×n matrix can be regarded as a mn-dimension vector.
In k-means, the distance is usually defined as the ordinary
vector distance. If the distance between two vectors is large,
it means the two matrices are largely different. However, such
definition is too rough. It mainly has two drawbacks. Firstly,
it does not consider the influence of neighbor pixels on a

certain pixel. Secondly, it does not take the weights of pixels
in different places into account. In this work, we improve the
two shortages of k-means clustering and propose an HMM
with parameter-optimized k-means clustering for handwriting
recognition. In our method, we consider the influence of
neighbor pixels and different weights of pixels in different
places of the matrices, which are denoted by three parameters.
Then we optimize the three parameters in order to gain the
highest accuracy rate. We conduct a series of experiments to
compare HMM with original k-means clustering and HMM
with parameter-optimized k-means clustering. Results show
that our parameter-optimized k-means clustering improve the
average accuracy from 78.0% to 83.5% when the number of
clusters is 3000.

II. RELATED WORK

Many works have been done for handwriting recognition
[4][5][2][6]. The HMM model for handwriting recognition
has been exploited by many researchers. Based on HMM,
related works can be divided into two main categories. One
regards each character as a real state [7] and the other regards
each word as a real state [8]. We choose the former one
because it is more suitable for the entire language and does not
require additional information. The latter one usually requires
a dictionary to get the words. If the total number of words is
large, the method will be not so efficient. So the latter one is
more suitable for domains with a dictionary of small size. The
former one does not need such information and has a much
wider area for application.

Among numerous different clustering method, k-means
clustering is one of the most popular because of its low cost
and simplicity [10]. K-means clustering is a famous method
for clustering. It is firstly proposed in [9]. It aims at mini-
mizing the differences within each clusters and maximizing
the differences among different clusters. The advantages of
k-means clustering are simple, efficient and low-cost, which
makes it widely used in various fields [10]. However, for
handwriting recognition, this method is not recommended to
be used in HMM because some experimental results show its
performance does not meet a level of satisfaction [11][12]. In
our work, we find two ways to improve it. The results show
that k-means can improved to an excellent clustering method
for HMM.

III. MODEL DESCRIPTION

A. Hidden Markov model

Generally, each handwriting character is represented by an
m×n binary matrix. If the value of a pixel is 0, it means the
pixel is white; if the value of a pixel is 1, it means the pixel
is black. Given a sequence of binary matrices, our problem
is to recognize which of the characters each binary matrix
stands for. HMM is a suitable approach for this problem. In
HMM, the real states are the characters. Intuitively, all the
different m×n binary matrices can be regarded as observation
states. However, the total number of such matrices is 2mn,
which is too large even with small m and n. If we do not
reduce the number of observation states, it will result in severe
sparse problem. A smart solution is to employ clustering
method. We can firstly cluster the matrices and then regard
the different clusters as observation states, which can largely
reduce the number of observation states. After clustering, we
adopt Baum-Welch algorithm to approximately calculate the
parameters of our HMM, which includes initial distribution of
characters π, transition probability P = (pij) and generative
probability Q = (qil). Here pij is the probability of transition
from the ith character to the jth character, where 1 ≤ i, j ≤ s, s
is the number of characters; qil is the probability of generating
the lth observation state given the real state is the ith character,
where 1 ≤ l ≤ k, k is the number of observation states. Then,
given the sequence of testing binary matrices, we apply Viterbi
algorithm, which uses the expectation maximization method,
to predict which the real character is for each binary matrix.

In the step of clustering, we employ a method based on k-
means clustering, which we call parameter-optimized k-means
clustering. In order to apply k-means method, we should
identify matrices as points in Euclidean space. A naive way
is just to identify the binary matrix as a vector of Rmn, with
each component 0 or 1. Given two points

X = (xij)1≤i≤m,1≤j≤n, Y = (yij)1≤i≤m,1≤j≤n, (1)

the distance between X and Y can be intuitively defined as
normal Euclidean distance:

d(X,Y) =

√ ∑
1≤i≤m,1≤j≤n

(xij − yij)2. (2)

However, if only using such definition of distance, the accu-
racy of the recognition would be very undesirable, as pointed
out in many works [11][12]. By further analyzing the problem,
we find two major shortages of the definition. Our work
aims to solve these two shortages. Our results show that
our parameter-optimized k-means clustering can significantly
improve the performance of original k-means clustering. We
discuss the two shortages and how to improve them in the
following two sections.

B. Influencing of neighbor pixels

The first shortage of the definition in Equation (2) is that
a slight translation of a character in a matrix can result in a
large distance from the original matrix. Suppose a matrix A1

denotes the character a. Then every pixel in matrix A1 move
from left to right for one pixel. We denote the new matrix by
A2. Then although the two matrices, A1 and A2, both stand
for the character a, the distance between A1 and A2 under
Equation (2) is very large. An efficient modification is to adopt
an averaging method. We use the notion (i1, j1) ∼ (i2, j2) if
(i1, j1) and (i2, j2) are adjacent. For a point X , we can define
the average processed version of X ′:

x′
ij = xij + λ

∑
i′j′∼ij

xi′j′ . (3)

Here λ is a positive constant. When λ is small, X ′ is close
to X , whereas a large λ is an indication of large influence of
neighbor pixels. The choice of λ depends on which λ enjoys
the best accuracy.

C. Weight consideration

There is another important shortage about the distance
definition in Equation (2). If we simply use the ordinary
Euclidean distance, it implies that each pixel in the m × n
matrix is equal important. However, it is not the case. The
weight of pixels which are close to the edge of the matrix
is not necessarily same to the weight of central ones. Due to
this observation, without loss of generosity, we assume that
the weights of central pixel in the matrix is 1, and the weight
of other pixel follows the exponential rule:

x′
ij = exp(η|i− m

2
|+ µ|j − n

2
|)xij , (4)

where η, µ are both constants which will be optimized through
experiments.

D. Calculation of initial parameters

Combining the two consideration discussed in two previous
sections, we have a transformed version X̃ of X:

x̃ij = exp(η|i− m

2
|+ µ|j − n

2
|)(xij + λ

∑
i′j′∼ij

xi′j′). (5)

Then we can adopt k-means clustering on X̃ instead of X .
Before using Baum-Welch algorithm, we need to calculate
the priori parameters of Hidden Markov model. We use a
frequency-based method to calculate all these parameters. Sup-
pose the number of clusters is k. For 1 ≤ i, j ≤ s, 1 ≤ l ≤ k,
suppose the ith character appears Pi times in the training data,
and the adjacent pair of the ith character and the jth character
appears Qij times. Furthermore, Ril denotes the number of
the ith character with the lth observation states in the training
data. Therefore, it is reasonable to set the transition probability
matrix as

p̂ij =
Qij
s∑

t=1
Qit

, (6)

the priori generative probability distribution is

q̂il =
Ril

k∑
t=1

Rit

=
Ril

Pi
, (7)

and the priori initial distribution is

π̂i =
Pi
s∑

j=1

Pj

. (8)

IV. EXPERIMENT

A. Experimental Settings

Our experimental dataset consists of 52152 characters and
6877 words [6], which has removed capitalized leading char-
acters. Each character is rasterized into an image of 16 × 8
binary pixels, which can be identified as a 16× 8 matrix or a
128-dimensional vector. Examples are shown in Figure 1.

Fig. 1. Examples of the dataset

We use 10-fold cross-validation to calculate the average
accuracy. The experiment is repeated for 10 times. Denote the
accuracy rate of the ten simulations by AR1, ..., AR10. Then
the average accuracy rate AR is

AR =

10∑
i=1

ARi

10
. (9)

B. Choice of optimal parameters

In this section our job is to find the optimal triple
(λ0, η0, µ0) with highest prediction accuracy. An immediate
way to find the most desired triple is to calculate the average
accuracy of all such possible triples. However, it is too time
consuming since there are too many such pairs. Therefore, we
make an assumption that the effectiveness of λ is independent
of η, µ. In this case, it is justifiably to set η = 0, µ = 0, and
obtaining the optimal λ′

0 which enjoys the highest average
accuracy. On the other hand, setting λ = 0, we vary the
value of (η, µ) to catch the optimal pair (η′0, µ

′
0). Then we

use (λ′
0, η

′
0, µ

′
0) as an approximation of (λ0, η0, µ0).

1) Finding the optimal η and µ: In the first group of
experiments, we set λ = 0 and cluster number k = 100.
We vary η and µ in the ranges [−0.25, 0.5] and [−0.5, 1]
respectively. The results are shown in Figure 2. From Figure
2, we observe that when (η, µ) is around (−0.1, 0.1), the
average accuracy is the highest. However, if we immediately
take (−0.1, 0.1) as the optimal pair of (η, µ), the estimation
will be too rough. In order to find the more precise pair, firstly
we fix η = −0.1, and let µ vary near 0.1. The relationship
between average accuracy and µ when η = −0.1 is shown in
Figure 3. From Figure 3, we find that when µ = 0 it achieves
the maximum accuracy 61.12%. Therefore, we choose µ′

0 = 0.
Then we fix µ = 0.1 and vary η near −0.1. The result is
shown in Figure 4. From the figure, we can easily see that the

−0.2
0

0.2
0.4

−0.5
0

0.5
1

0.1

0.2

0.3

0.4

0.5

0.6

ηµ

A
ve

ra
g

e
 A

cc
u

ra
cy

Fig. 2. Average Accuracy vs. η vs. µ

when η = −0.15 the average accuracy achieves the maximum
value 58.87%. Therefore, we choose η′0 = −0.15. So we
set (−0.15, 0) as optimal pair (η′0, µ

′
0). Remark: The above

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1
0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

µ

A
ve

ra
g

e
 A

cc
u

ra
cy

Fig. 3. Average Accuracy vs. µ

−0.3 −0.25 −0.2 −0.15 −0.1 −0.05 0 0.05
0.5

0.51

0.52

0.53

0.54

0.55

0.56

0.57

0.58

0.59

0.6

η

A
ve

ra
g

e
 A

cc
u

ra
cy

Fig. 4. Average Accuracy vs. η

discussion implies that for vertical direction, central part of the
pixel matrix is more important, while there is no significant
difference in horizonal direction.

2) Finding the optimal λ: In the second group of experi-
ments, we fix (η, µ) = (0, 0) and vary λ to find its optimal
value. Intuitively, no matter how much influence the neighbor

pixels have on a certain pixel, the influence cannot overwhelm
the value of the pixel itself. So the optimal value of λ should
be no larger than 1. Therefore, we search the optimal value for
λ within the interval [0, 1]. The relationship between average
accuracy and λ when (η, µ) = (0, 0) is shown in Figure 5.
From the figure, we can see that the average accuracy increases
along with λ. When λ is around 1, the average accuracy
achieves the maximum value. Therefore we choose λ′

0 = 1
as our optimized value.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.63

0.64

0.65

0.66

0.67

0.68

0.69

0.7

0.71

0.72

λ

A
ve

ra
g
e
 A

cc
u
ra

cy

Fig. 5. Average Accuracy vs. λ.

3) Short Conclusion: From these experiments, we fi-
nally find the optimal triple (λ′

0, η
′
0, µ

′
0). When (λ, η, µ) is

(1,−0.15, 0), our HMM with parameter-optimized k-means
clustering can achieve highest average accuracy.

C. Results of our optimized model

After we have got the optimal value for the parameters we
need, we conduct experiments to evaluate the performance of
our model and compare our model with HMM with original
k-means clustering. The number of clusters k in k-means is
very important. Since we have no solid background about
how many clusters is best for prediction, we vary k in our
experiments and get the average accuracy under different value
of k. We set the steps from 100 to 6000. The results are shown
in Table I and Figure 6.

From the results, we can see that when k is below 1000,
the average accuracy of both original model and our optimized
model increases along with the number of clusters increasing.
However, when k is larger than 1000, the average accuracy
of both the two models no more increases. When k is 3000,
the average accuracy of the original model is 78.0% and our
optimized model is 83.5%. Our optimized model improves the
average accuracy by 5.5%, which is really a big improvement
in handwriting recognition.

V. CONCLUSION

In this work, we propose a hidden Markov model with
parameter-optimized k-means clustering for handwriting char-
acters recognition. We find two shortages of the original
definition distance in k-means. We improve k-means clustering
by considering the influence of neighbor pixels and different

TABLE I
AVERAGE ACCURACY OF ORIGINAL MODEL AND OPTIMIZED MODEL

Number of Clusters 100 500 1000 2000
Original Model 56.6% 72.9% 76.5% 77.9%
Optimized Model 71.5% 81.3% 82.8% 82.2%
Number of Clusters 3000 4000 5000 6000
Original Model 78.0% 77.7% 78.3% 78.6%
Optimized Model 83.5% 83.4% 83.3% 83.2%

0 1000 2000 3000 4000 5000 6000
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

K

A
ve

ra
g
e
 A

cc
u
ra

cy

Optimized kmeans

Original kmeans

Fig. 6. average accuracy vs. number of clusters k

weights of pixels in different places. We conduct a series
of experiments to compare our optimized model and original
model. Results show that our optimized model improves the
average accuracy from 78.0% to 83.5% when the number of
clusters is 3000. So our model improves the average accuracy
of HMM with k-means clustering for handwriting characters
recognition.

REFERENCES

[1] Tappert, C. Charles. The state of the art in on-line handwriting recogni-
tion, IEEE Transactions on Pattern Analysis and Machine Intelligence,
1990.

[2] O. Chapelle. Training a support vector machine in the primal, Neural
Computation, 2007.

[3] L.R. Rabiner. A tutorial on hidden Markov models and selected appli-
cations inspeech recognition, Proceedings of the IEEE, 1989.

[4] N. Arica, F. Yarman-Vural. An overview of character recognition fo-
cused on off-line handwriting, IEEE transactions on systems, man and
cybernetics - part C: Applications and reviews, 2001.

[5] S. Chevalier, E. Geoffrois, F. Preteux. A 2d dynamic programming
approach for markov random field-based handwritten character recog-
nition, IAPR International Conference on Image and Signal Processing,
2003.

[6] B. Taskar, C. Guestrin, D. Koller. Max-margin Markov networks, Neural
Information Processing Systems, 2003.

[7] O.D. Trier, A.K. Jain, T. Taxt. Feature extraction methods for character
recognition - a survey, Pattern Recognition, 1996.

[8] D. Guillevic, C.Y. Suen. HMM word recognition engine, Proceedings
International Conference on Document Analysis and Recognition, 1997.

[9] J.B. MacQueen. Some methods for classification and analysis of mul-
tivariate observations, Proceedings of 5th Berkeley Symposium on
Mathematical Statistics and Probability, 1967.

[10] K. Jain, M.N. Murty, P.J. Flynn. Data clustering: a review, ACM
computing surveys (CSUR), 1999.

[11] I.S. Dhillon, Y. Guan, B. Kulis. Kernel k-means: spectral clustering and
normalized cuts, Proceedings of the tenth ACM SIGKDD, 2004.

[12] T. Jebara, Y. Song, K. Thadani. Spectral clustering and embedding with
hidden Markov models, Machine Learning: ECML, 2007.

