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Abstract
While there has been a tremendous interest in pro-

cessing graph-structured data, existing distributed graph
processing systems take several minutes or even hours to
mine simple patterns on graphs. In this paper, we try to
answer the question of whether it is possible to build a
graph pattern mining engine that is both fast and scalable.
Leveraging the observation that in several pattern mining
tasks, providing an approximate answer is good enough,
we propose the use of approximation for graph pattern
mining. However, we find that existing approximation
techniques do not work for this purpose. Based on this,
we present a new approach for approximate graph pattern
mining that leverages recent advancements in graph ap-
proximation theory. Our preliminary evaluations show
encouraging results: compared to state-of-the-art, finding
3-motifs in Twitter graph is 165⇥ faster while incurring
only 5% error. We conclude by discussing several systems
challenges to make our proposal practical.

1 Introduction
The past few years has seen a resurgence in enterprises stor-
ing and processing massive amounts of graph-structured
data [1, 2]. Algorithms for graph processing can broadly
be classified into two categories. The first, graph analysis
algorithms, consists of those which compute properties of
a graph, typically using neighborhood information. Ex-
amples of such algorithms include page rank [41], com-
munity detection [26] and label propagation [57]. The
second, graph pattern mining algorithms, focuses on dis-
covering structural patterns in a graph. Examples of this
include motif finding [38], frequent sub-graph mining
(FSM) [55] and clique mining [16]. Both categories have
been thoroughly explored in academic literature, with
researchers proposing several algorithms.

Today, a deluge of graph processing frameworks exist,
developed both in academia and open-source [17, 20, 21,
29–31, 35–37, 39, 45–47, 53]. These frameworks typi-
cally provide high-level abstractions that make it easy for
developers to implement many graph algorithms. While
both categories of graph algorithms are equally important,
a vast majority of the existing graph processing frame-
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works have focused on graph analysis algorithms. These
frameworks are fast and can scale out to accommodate
really large graphs: for instance, GraM [54] can run one
iteration of page rank on a trillion-edge graph in 140
seconds in a cluster. In contrast, graph pattern mining sys-
tems fail to scale to even moderately sized graphs, and are
slow, taking several hours to mine simple patterns [25, 50].

The main culprit that hinders the scalability of pattern
mining is the complexity of these algorithms—mining
patterns requires complex computations and storing expo-
nentially large intermediate candidate sets. For example,
a graph with a million vertices may possibly contain 1017

triangles. While distributed graph-processing solutions
are good candidates for processing such massive inter-
mediate data, the need to do expensive joins to create
candidates severely degrades performance. As a result,
state-of-the-art systems like Arabesque [50] propose new
abstractions for storing candidates in a distributed setting.
However, even with optimized methods to store candi-
dates, Arabesque takes over 10 hours to count motifs in a
graph with less than 1 billion edges.

In this paper, we ask the question “Is it possible to
build a graph mining system that is both fast and scal-
able?” A key observation that we leverage in answering
this question is: in many pattern mining tasks, it is often
not necessary to output the exact answer. For instance, in
FSM the task is to find the frequency of subgraphs with
an end-goal of ordering them by occurrences. Similarly,
motif counting determines the number of occurrences of
a given motif. In these scenarios, it is su�cient to provide
an approximately correct answer. Indeed, our conversa-
tions with a social networking firm revealed that one of
their most time-consuming production jobs is counting
graphlets [44] to determine social graph similarity. An-
other company’s core business depends on classifying
fraudulent patterns in graphs and this is done by counting
the frequency of pattern occurrences. In both cases, an
approximate count is good enough. Further more, it is
not necessary to materialize all possible occurrences of a
pattern1. Thus, we propose using approximate methods
to build a fast and scalable graph mining system.

1In large graphs, it may even be infeasible to output all embeddings.



Approximate analytics is an area that has garnered
attention for big data analytics [5, 12, 27], where the goal
is to let the user trade-o� accuracy for much faster results.
The basic idea in approximation systems is to execute the
exact algorithm on small portions of the data, referred
to as samples, and then rely on the statistical properties
of these samples to compose partial results and/or error
characteristics. The fundamental assumption underlying
these systems is that there exists a relationship between
the input size and the accuracy of the results. However,
this assumption falls apart when applied to graph pattern
mining. In particular, running the exact algorithm on a
sampled graph may not result in reducing the runtime or
provide a good estimation of the result (§2.2).

In this paper, we propose leveraging graph approxima-
tion theory to build approximate pattern mining systems.
The key idea we exploit is that approximate pattern mining
can be viewed as equivalent to probabilistically sampling
random instances of the pattern. This observation lets
us run sampling methods with very high parallelism and
provides drastic reduction in run-time while sacrificing
a small amount of accuracy. For example, our prelimi-
nary evaluation shows that our approach is 165⇥ faster
compared to the state-of-the-art for mining 3-motifs while
incurring only 5% error.

There are a number of systems challenges in realizing
a practical approximate pattern mining system. While
we use the theory as a foundation, we need to extend
the state-of-the-art approximation techniques not only to
general patterns, but also to distributed settings. Further,
an important problem in any approximation system is
in allowing users to navigate the tradeo� between the
result accuracy and latency. While existing approximate
processing systems have proposed a number of approaches
for this task, we find that they do not fit our needs. In the
rest of this paper, we discuss our approach, and our initial
directions in tackling each of these challenges.

2 Background & Motivation
We begin by motivating the need for a new approach to
approximate pattern mining.

2.1 Graph Pattern Mining
Mining patterns in a graph represents an important class of
graph processing problems. The objective here is to find
instances of a given pattern in a graph where a pattern is
any arbitrary subgraph. Thus, pattern mining algorithms
aim to output all subgraphs, commonly referred to as
embeddings, that match the input pattern. Matching is
done via sub-graph isomorphism, which is well known to
be NP-complete. Several varieties of graph pattern mining
problems exist, ranging from finding cliques to mining
frequent subgraphs. We refer the reader to [6, 50] for an
excellent, in-depth overview of graph mining algorithms.

A common approach to implement pattern mining al-
gorithms is to iterate over all possible embeddings in the
graph starting with the simplest pattern (e.g., a vertex or
an edge). The system checks all such candidate embed-
dings, and prunes those which cannot be part of the final
answer. The resulting candidates are then expanded by
adding one vertex or edge, and the process repeated until
it is not possible to expand the exploration further. The
obvious challenge in graph pattern mining, as opposed
to graph analysis, is the exponentially large candidate set
that need to be checked.

Distributed graph processing frameworks are built to
support massive amounts of data, and thus may seem like
an ideal candidate for this situation. Unfortunately when
applied to graph mining problems, they face several chal-
lenges. Arabesque [50], a recently proposed distributed
graph mining system, discusses these challenges in detail,
and proposes solutions to tackle several of them. How-
ever, even Arabesque is unable to scale to large graphs
due to the need to materialize candidates and exchange
them between machines. As an example, Arabesque takes
over 10 hours to count motifs of size 3 in a graph with
less than a billion edges in a cluster of 20 machines, each
having 32 cores and 256GB of memory.

2.2 Approximate Processing on Graphs
Approximate processing is an approach that has been used
with tremendous success in solving similar problems in
both big data analytics [5, 27] and databases [19, 22,
23]. Thus it is natural to explore similar techniques for
pattern mining in graphs given our earlier description of
enterprise use cases. However, simply extending existing
approaches to graphs is insu�cient.

The common underlying idea in approximate process-
ing systems is to sample the input that a query or an
algorithm works on. Several techniques for sampling the
input exists, for instance, BlinkDB [5] leverages stratified
sampling. To estimate the error, approximation systems
rely on the assumption that the sample size relates to the
error in the output (e.g., if we sample K items from the
original input, then the error in aggregate queries, such
as SUM, is inversely proportional to

p
K). It is straightfor-

ward to envision extending this approach to graph pattern
mining—given a graph and a pattern to mine in the graph,
we first sample the graph, and run the pattern mining
algorithm on the sampled graph.

Figure 1a depicts the idea as applied to triangle count-
ing. In this example, the input graph contains 10 triangles.
Using uniform sampling on the edges we obtain a graph
with 50% of the edges. Applying triangle counting on this
sample yieldings an answer of 1. There are a number of
approaches to scale this number to the actual graph. One
naive approach is to double it, since we reduced the input
by half. To verify the feasibility of the approach, we eval-
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(a) Uniform edge sampling.

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80 90
0

2

4

6

8

10

12

Er
ro
r
(%
)

Sp
ee
du
p

Edges Dropped (%)

Error
Speedup

(b) 3-chains in Twitter graph
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(c) Triangles in UK graph
Figure 1: Simply extending approximate processing techniques to graph pattern mining does not work.

uated it on the Twitter graph [34] for finding 3-chains and
the UK webgraph [14] graph for triangle counting. The
relation between the sample size, error and the speedup
compared to running on the original graph ( T

or ig

T
sample

) is
shown in figs. 1b and 1c respectively.

These results show fundamental limitations of the ap-
proach. We see that there is no relation between the
size of the graph (sample) and the error or the speedup
achieved. Even very small samples do not provide notice-
able speedups, and conversely, even very large samples
end up with significant errors. Thus, we conclude that
the existing approximation approach of running the ex-
act algorithm on one or more samples of the input is
incompatible with graph pattern mining.

3 Our Approach
3.1 Approximate Pattern Mining
The key idea we leverage is to sample instances of a
given pattern from the graph, and based on the sampling
probability and how many instances we find, we estimate
the total number of instances of that pattern in the graph.
Since only sampling once would yield large variance on
the results, we independently sample multiple times and
take the average to reduce the variance. We call each
sampling process an estimator. By using r estimators
and making r su�cient large, we are able to get accurate
results with bounded errors. Since an estimator takes
computation and memory resource to sample a pattern,
picking the number of estimators r provides a trade-o�
between result accuracy and resource consumption.

While the intuition of using such sampling to ap-
proximate pattern counts is straightforward, the approx-
imation bound analysis is quite subtle. In fact there
is a large body of theoretical work on various algo-
rithms to sample patterns and analysis to prove their
bounds [7, 10, 18, 32, 42, 43, 51]. Consider triangle
counting as an example. Naively, one would design an es-
timator that uniformly samples three edges from the graph
without replacement. Since the probability of sampling
one edge is 1/m in a graph of m edges, the probability of
sampling three edges is 1/m3. If the three sampled edges
form a triangle, the estimator outputs triangle count to be
m3; otherwise, it outputs 0. While such an estimator is
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Figure 2: Approx. triangle count by neighborhood sampling

unbiased, since m is large, the probability that the estima-
tor would find a triangle is very low and the variance of
the result is very large. To reduce the variance, we would
require a large number of estimators, and this increases
time and memory consumption.

We use neighborhood sampling [43] in our framework,
which is an e�cient technique to sample graph patterns.
Intuitively, compared to the naive sampling approach,
neighborhood sampling increases the probability that an
estimator would actually find an instance of the given
pattern, and thus requires fewer estimators to achieve the
same accuracy. Neighborhood sampling models the graph
as a stream of edges and starting from a random edge, we
gradually add more edges until the edges form the pattern
or it is impossible to form the pattern. Let E denote
the event that a pattern is formed, E1,E2, . . .,Ek are the
events that edges m1,m2, . . .,mk are sampled and stored.
Thus the probability that a pattern is actually sampled can
be calculated as Pr(E) = Pr(E1\E2 · · ·\Ek) = Pr(E1)⇥
Pr(E2 |E1) · · ·⇥Pr(Ek |E1, . . .,Ek�1).

We leverage neighborhood sampling to build several
estimators to sample patterns. For triangle counting, if
an estimator successfully samples a triangle, converting
probability to expectation, ei = mc will be the estimate
of triangles in the graph, where m is the number of edges
in the graph and c is the number of neighbors of the
first sampled edge that appearing after it. For a total of
r estimators, we will output 1

r

Õ
r ei as the approximate

value. Figure 2 presents an example graph with five nodes.
Estimator E0 finds the triangle formed by edges (0,3),
(0,4) and (3,4). The probability of finding (0,3) is 1/m =
1/10. Since (0,3) has four adjacent edges that appear
after it in the order (i.e., (0,4), (1,3), (2,3), and (3,4)),
the probability that finds (0,4) is 1/c = 1/4. Therefore,
the probability of finding this specific triangle (0,3,4)



3-Motif Count System |V| |E| Runtime

Ours (5% error) 16 x 8 4.8M 68.9M 11.5s
Arabesque [50] 16 x 8 4.8M 68.9M 299.2s

Ours (5% error) 16 x 8 41.7M 1.47B 4m
Arabesque [50] 20x32 180M 0.9B 10h45m

Table 1: Using approximation, we are able to not only reduce
run time, but also process larger graphs on smaller clusters.

is 1/(mc) = 1/40, and thus E0 estimates the number of
triangles to be 40, which is a biased result. With more
independent estimators E1, E2, and E3, the estimated
count becomes more accurate as the final result takes the
average of the four estimators.

3.2 Evaluation of Potential
One of the first questions that we need to answer before
exploring the practicality and challenges in our proposal
is to understand how much benefit we can obtain by lever-
aging approximation. To do so, we implemented a simple
pattern mining task, counting 3-motifs, using the approxi-
mation technique described earlier in Apache Spark [56].
We chose two datasets: LiveJournal (68.9M edges) [3]
and Twitter (1.47B edges) [34], and use 16 machines on
Amazon EC2 (8 cores each) to run an experiment which
tries to find the count of 3-motifs, and compare against
Arabesque [50]. We set the number of estimators to
achieve an error rate of 5%. Table 1 shows the results.

We were unable to get Arabesque to handle the Twitter
graph in our cluster, so we use the numbers in [50] for
the larger graph. We see that our approach significantly
outperforms Arabesque, and that the performance gap
increases in the larger graph. Our approach is able to
achieve more than 2 orders of magnitude (165⇥) reduc-
tion in computation time while using less resources and
incurring only a small (5%) loss in accuracy.

4 Challenges
Several challenges lie ahead of us before we can achieve
our goal of a general purpose approximate graph mining
system. We describe some of them in this section.

4.1 Challenge 1: General Patterns
Neighborhood sampling was proposed in the context of
triangle counting, so we need to extend it to handle gen-
eral patterns. We plan to explore this using one simple
observation: the sampling process in each estimator can
be seen as comprising of two phases. In the first, sampling
phase, edges are sampled either randomly, or using adja-
cency information of already sampled edges. The phase
ends when the sampled edges have fixed the vertices for
a given pattern. Then we wait for the edges that complete
the pattern, hence the process enters closing phase.

The amount of time an estimator process spends in
each of these phases, and the number of edges sampled

in them depend on the pattern. In triangle counting, there
is only one way to form the triangle: the sampling phase
finds two adjacent edges, and the closing phase awaits the
third edge to form a triangle with the two sampled edges.
For a general graph pattern with multiple nodes, there can
be multiple ways to form the pattern. One approach to
generalize the sampling is to restrict the implementation
of mining tasks using the two phases (e.g., using a simple
API). Then, the challenge is to compute the probability
of finding the pattern automatically given a mining task
written using this restricted model.

4.2 Challenge 2: Distributed Settings
Neighborhood sampling viewed as comprising of two
phases is massively parallel, since the sampling and clos-
ing phases remains the same for each estimator and can be
captured using a simple data-parallel map phase, and the
results can be aggregated using a reduce phase. Unfortu-
nately, we cannot simply scale up this process horizontally
by locally running the process in each machine and ag-
gregating results, since the probability analysis assumes
that each estimator sees the entire graph. Partitioning the
graph into multiple machines results in missing patterns
that span partitions, and significantly underestimates re-
sults, the magnitude of which depends on the partitioning
strategy. One possible solution for this problem is to ac-
count for the error due to this underestimation by scaling
the result by a factor f (w), which is related to the num-
ber of partitions w. For this to work, we must not only
precisely compute f (w), but also do it for any pattern.

4.3 Challenge 3: Error-Latency Profile
A key feature in any approximate processing system is the
ability for users to trade-o� accuracy for result latency.
To allow users to navigate this trade-o�, our solution
needs to understand the relation between latency and error.
In our approach, the only configurable parameter is the
number of estimators used for mining. Setting a specific
number of estimators, Ne, results in a fixed runtime and
an error within a bound. Thus, by varying the number
of estimators, we can vary the accuracy achieved and
the computation time accordingly. To enable picking the
right number of estimators, we would need two profiles,
estimators vs. latency and estimators vs. error.

4.3.1 Estimators vs. Latency

The time complexity of our approximation algorithm is
linear in terms of the number of edges in the graph and the
number of estimators. Given a graph and a particular pat-
tern, the computation time is dominated by the number of
estimators when the number of estimators is large enough.
As an example, Figure 3 shows the relationship between
the computation time and the number of estimators for
triangle counting in the Twitter graph [34]. We can see
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Figure 3: Relations between estimators and run-time/error rate.
that the curve is close to linear when the number of estima-
tors is larger than 0.5M. When the number of estimators
is small, the computation time is also a�ected by other
items and thus the curve is not strictly linear. However,
for these regions, it is not computationally expensive to
profile more data points, and as these regions have high
error, they are less likely to be of interest to users. Thus,
we plan to study classical regression-based techniques to
build this profile and using the profile can aid in picking
the number of estimators to use within a profiling cost.

4.3.2 Estimators vs. Error

As seen from Figure 3, the estimator vs. error profile
is non-linear. Building this profile is challenging due to
several reasons. Exhaustive profiling is out of the question
due to its prohibitive time requirements. Further, the
actual errors vary within some range for the same number
of estimators due to the randomness in our approach.
This makes theoretical closed-bound solutions di�cult.
Finally, to estimate the error, we need to know the ground-
truth. However, computing the ground-truth undermines
the usefulness of approximate processing.

We plan to investigate a number of ways to build this
curve in an e�cient manner. This includes using a piece-
wise modeling of the curve and leveraging experiment
design [52] or bayesian optimization [11] to fit the model.
Further, we plan to explore well known statistical tech-
niques like bootstrap [33]. Finally, we are also planning
to look at probabilistic techniques that can use a small
portion of the graph to build this profile without the need
to know the ground-truth.

4.4 Challenge 4: Handling Updates
While existing graph processing systems assume graphs to
be static, real-world graphs are dynamic. Some previous
works have looked at supporting incremental computa-
tions on evolving graphs [31, 39, 40], but they do not
extend to pattern mining. The challenge here is to incor-
porate incremental profile building techniques to support
graph evolution, i.e., can we avoid rebuilding the profiles?

For instance, it may be possible to use stale profile without
much degradation if we can predict when the profile is
not good enough to constitute a rebuilding. Further, it
may be possible to cache estimator states and reuse them
later during rebuilding. Finally, an interesting direction
to look at is the possibility of precomputing some base
patterns that could be building blocks for other patterns.

5 Related Work
A number of systems have been proposed in the literature
for graph processing [17, 29, 30, 35, 36, 45–47, 53] and
graph mining [4, 48, 50]. Processing systems typically
only focus on graph analysis, and do not support e�cient
pattern mining. Mining systems on the other hand require
significant time to process even moderately sized graphs.
[49] discusses an approximate motif counting algorithms
in HPC clusters. However, its focus is on optimizing MPI
communication techniques for one specific algorithm, and
hence does not extend to general graph patterns.

Approximate analytics systems [5, 12, 27] have re-
cently gained popularity due to the time required to pro-
cess large datasets. These systems reduce the amount of
data that is used in the analysis in the hope that this re-
duces processing time. However, as we show in this work,
this technique does not extend to graph pattern mining.

Theory community has invested significant e�ort in ap-
proximate graph algorithms for several graph analysis
tasks [8, 9, 13, 15, 24, 28]. None of these are aimed at
distributed processing, nor do they propose ways to un-
derstand the performance profile of the algorithms when
deployed in the real-world. We leverage this rich theoreti-
cal foundation by proposing the use of these techniques
to mine general patterns in distributed settings.

6 Conclusion
In this paper, we proposed our approach towards building
a distributed graph pattern mining system that is both
fast and scalable to large graphs. Our proposal leverages
approximation to achieve this goal, by building on ad-
vancements in graph approximation theory. We discussed
several challenges in realizing our proposal, which we
are actively pursuing. Our preliminary evaluations show
promise in our proposed techniques.
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