
Flash: E�icient Dynamic Routing
for O�chain Networks

Peng Wang
City University of Hong Kong

Hong Kong, China
pewang4-c@my.cityu.edu.hk

Hong Xu
City University of Hong Kong

Hong Kong, China
henry.xu@cityu.edu.hk

Xin Jin
Johns Hopkins University

Baltimore, USA
xinjin@cs.jhu.edu

Tao Wang∗
New York University

New York, USA
tw1921@nyu.edu

ABSTRACT
O�chain networks emerge as a promising solution to address the
scalability challenge of blockchain. Participants make payments
through o�chain networks instead of committing transactions on-
chain. Routing is critical to the performance of o�chain networks.
Existing solutions use either static routing with poor performance
or dynamic routing with high overhead to obtain the dynamic
channel balance information. In this paper, we propose Flash, a
new dynamic routing solution that leverages the unique transac-
tions characteristics in o�chain networks to strike a better tradeo�
between path optimality and probing overhead. By studying the
traces of real o�chain networks, we �nd that the payment sizes
are heavy-tailed, and most payments are highly recurrent. Flash
thus di�erentiates the treatment of elephant payments from that of
mice payments. It uses a modi�ed max-�ow algorithm for elephant
payments to �nd paths with su�cient capacity, and strategically
routes the payment across paths to minimize the transaction fees.
Mice payments are sent directly by looking up a routing table with
a few precomputed paths to reduce probing overhead. Testbed ex-
periments and trace-driven simulations show that Flash improves
the success volume of payments by up to 2.3x compared to the
state-of-the-art routing algorithm.

CCS CONCEPTS
• Networks → Network protocol design; Peer-to-peer net-
works.

KEYWORDS
Blockchain, O�-chain, Payment Channels, Routing

∗The work was done when Tao was with City University of Hong Kong.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
CoNEXT ’19, December 9–12, 2019, Orlando, FL, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6998-5/19/12. . . $15.00
https://doi.org/10.1145/3359989.3365411

ACM Reference Format:
PengWang, Hong Xu, Xin Jin, and TaoWang. 2019. Flash: E�cient Dynamic
Routing for O�chain Networks. In The 15th International Conference on
emerging Networking EXperiments and Technologies (CoNEXT ’19), December
9–12, 2019, Orlando, FL, USA. ACM, New York, NY, USA, 12 pages. https:
//doi.org/10.1145/3359989.3365411

1 INTRODUCTION
Blockchain is the fundamental infrastructure to support a new
generation of decentralized Internet applications. It has enabled
many innovations from cryptocurrencies to smart contracts [25,
35]. Scalability is the primary challenge for blockchain to support
decentralized applications at scale [18, 23, 25, 27, 32]. As a concrete
example, Bitcoin only processed fewer than 20 transactions per
second at peak from November 2018 to January 2019 [12], whereas
Visa was reported to process more than 47,000 transactions per
second at peak during the 2013 holiday seasons [27].

Blockchain is intrinsically di�cult to scale because it aims to
achieve global consensus between all participants, which involves
complex protocols to consistently replicate all state changes. De-
spite many e�orts to improve the e�ciency and reduce the overhead
of blockchain protocols [32, 37], their performance is ultimately
limited by the network bandwidth and processing capability of the
participants to replicate state changes.

O�chain networks (or payment channel networks) emerge as one
of the most promising solutions to solve this dilemma [18, 23, 27].
Two participants can use a bidirectional payment channel to make
multiple payments with each other, without the need to commit ev-
ery transaction to the blockchain. The blockchain is only involved
when the participants set up and tear down the payment channel,
or when they have disagreements on the transaction results. A
network of payment channels form an o�chain network, and allows
two participants without direct channels to transact via a multi-
hop path. A transaction can be safely committed in an o�chain
network as soon as the participants on the payment path achieve
an agreement using a multisignature contract such as a Hashed
Timelock Contract (HTLC) [27]. This obviates the need to consis-
tently commit the transaction to every participant on the chain.
As a result, o�chain networks have the potential to signi�cantly
improve the transaction throughput and reduce the transaction
latency of blockchain. Examples including Lightning Network [10],

CoNEXT ’19, December 9–12, 2019, Orlando, FL, USA Peng Wang, Hong Xu, Xin Jin, and Tao Wang

Raiden Network [11], and Ripple [9] are increasingly being adopted
and used in practice.

Routing is critical for o�chain networks to ful�ll their promise.
E�cient routing can successfully deliver most payments in an
o�chain network, minimizing the operations on the blockchain.
While routing is a well-studied problem in computer networking,
there is a key di�erence between an o�chain network and a com-
puter network. In a computer network, each link has static capacity
which does not change as the link sends packets. However, in an
o�chain network, the initial balance of a payment channel (i.e.
channel capacity) is deposited by the participants during the chan-
nel setup, and the balance is updated after every payment in the
channel. As a result, o�chain networks are more dynamic than
computer networks. The balance dynamics of the payment channel
are described in detail in §2.1.

At a high level, there are two major classes of protocols for net-
work routing. The �rst uses static routing where the path for each
�ow is �xed after (periodical) path discovery. Many traditional
routing protocols such as OSPF and IS-IS fall into this class. Static
routing guarantees reachability, and is typically used when the
network topology and tra�c are mostly static, or if the network
capacity is abundant and the performance is not a concern. Early
routing protocols for o�chain networks, such as Flare [28], Slien-
tWhispers [24] and SpeedyMurmurs [29], leverage this approach.
But they su�er from low transaction throughput, because they do
not consider dynamic channel balance in o�chain networks. The
limitation of static routing motivates the second class of protocols
that use dynamic routing, where the path for each �ow or �owlet
is dynamically updated based on real-time network characteris-
tics. Many emerging solutions in datacenters and inter-datacenter
WANs [14, 20, 21, 31, 33] fall into this class. Spider [30] applies
dynamic routing to o�chain networks and achieves higher perfor-
mance than earlier static protocols.

Dynamic routing, however, is not a panacea. It is well-known
that there exists a trade-o� between path optimality and probing
overhead. Using an optimal path comes at the cost of probing the
network in the �rst place. This is especially true for o�chain net-
works, as the channel balance changes after each payment, and one
needs to pay the probing overhead for every single payment if an
optimal path was to be chosen.

Classical solutions in computer networking suggest to strike
a balance between path optimality and probing overhead by dif-
ferentiating the treatment of elephant �ows from that of mice
�ows [13, 16]. A small number of elephant �ows are dynamically
scheduled on di�erent paths for high performance, and the vast
mice �ows are randomly mapped to static paths for low probing
overhead. Realizing the idea of elephant �ow routing in o�chain
networks is challenging for at least two reasons.

• First, we need to understand whether elephant �ow routing
is suitable for o�chain networks. If all payments in o�chain
networks have similar size, then there do not exist elephants
in the �rst place. Further, if mice payments are highly scat-
tered, i.e. a sender involves a di�erent receiver every time
to send a payment, signi�cant probing overhead for mice
payments still can not be avoided.

• Second, we need to design an e�cient protocol to satisfy the
unique requirements of o�chain networks. Because o�chain

networks are more dynamic than computer networks, ele-
phant payments need to probe more paths aggressively in
order to �nd e�cient routing. The problem is exacerbated
by the distributed nature of o�chain networks, unlike dat-
acenter networks and backbone WANs that have a control
plane to coordinate participants.

To address these challenges, we �rst conduct a measurement
study on the payment traces of two real-world blockchain networks,
Ripple [9] and Bitcoin [3]. By analyzing the traces, we �nd two
important characteristics of cryptocurrency transactions. First, the
payment sizes exhibit heavy-tailed distributions. Most transactions
are small, while a small number (<10%) of transactions constitute
most (over 94%) of the total transaction volume. This demonstrates
the existence of elephant transactions in o�chain networks. Second,
payments are highly recurrent. Within a period of 24 hours, over
80% transactions happen between existing pairs of participants.
This suggests that most mice payments can leverage existing paths
with no extra probing overhead, instead of discovering new paths.

Based on these �ndings, we design Flash, a new dynamic routing
solution for o�chain networks. Di�erent from Spider [30] which
uses a �xed set of paths for each payment, Flash separates elephant
payments from mice to achieve higher throughput with low prob-
ing overhead. Flash uses a modi�ed max-�ow algorithm based on
Edmonds-Karp [15] to probe and �nd candidate paths with su�-
cient capacity for elephant payments, and carefully distribute the
payments over these paths to minimize transaction fees (charged by
intermediate nodes). Mice payments are sent through a few existing
paths if they have already been computed to minimize the need
of probing. Payments are divided into trunks to be sent through
multiple paths when needed, since the atomicity of the transactions
can be ensured with recent proposals such as Atomic Multi-Path
Payments (AMP) [1].

In summary, we make the following contributions.
• We perform a measurement study on the payment traces of
real blockchain networks to understand the tra�c charac-
teristics of cryptocurrency transactions.

• We design Flash, a new routing protocol for o�chain net-
works that di�erentiates elephant payments from mice in
order to achieve high throughput with low probing overhead.

• We implement a prototype of Flash on a cluster of commodity
servers. Testbed experiments and trace-driven simulations
show that Flash improves the network throughput by up
to 2.3x compared to the state-of-the-art routing algorithms.
The code of Flash and the o�chain network traces are open
source on Github.1

2 BACKGROUND AND MOTIVATION
In this section, we �rst give a brief introduction of o�chain net-
works, and then motivate our design with our �ndings in real traces
from Ripple [9] and Bitcoin [25].

2.1 A Primer on O�chain Networks

Payment channels. Payment channels are a basic building block
of o�chain networks. A payment channel is established between

1https://github.com/NetX-lab/O�chain-routing-traces-and-code

Flash: E�icient Dynamic Routing
for O�chain Networks CoNEXT ’19, December 9–12, 2019, Orlando, FL, USA

ONCHAIN

Alice Bob

Deposit: 6

Tx1

Tx2

Alice: 4

Bob: 2

OFFCHAIN

Deposit: 6
Alice: 5

Bob: 1

4 2

3 3

5 1

Open Channel Close Channel

Figure 1: A payment channel between Alice and Bob. Alice
and Bob deposit 4 and 2 satoshis respectively to open a chan-
nel. Two payments are made o� the chain. Alice �rst pays
Bob 1 satoshi, and then receives 2 satoshis from Bob. Finally,
the channel is closed by committing the latest state to the
chain.

two parties, and allows them to make multiple payments with-
out the need to commit every payment to the chain. To ensure
the o�chain security, both parties maintain a multi-signature ad-
dress which guarantees that any balance updates on the channel
require mutual agreement. The chain is only involved when there
is a dispute regarding current balance or setting up and tearing
down the channel. By moving payments away from the chain, it
reduces computation and replication overhead, improves transac-
tion throughput, and lowers latency. Furthermore, because sending
payments over payment channels does not need to reward “miners”,
payment channels provide more competitive transaction fees and
better support the mice payments.

A toy example in Figure 1 illustrates the basic operations of a
payment channel using bitcoin as the cryptocurrency. To open a
channel, Alice and Bob make a transaction on the chain in which
they deposit funds to the channel. The channel is established after
the transaction is committed to the chain. In this example, Alice
funds the channel with 4 satoshis and Bob with 2 satoshis (Satoshi is
the smallest unit of bitcoin). At this point, the balance—which limits
the maximum amount of bitcoin one party can send to the other—
becomes 4 satoshis for Alice and 2 satoshis for Bob. The balance
of each party is then updated after each successful transaction
executed based on mutual agreement. Thus if Alice pays Bob 1
satoshi, both would have a balance of 3 satoshis. As long as the
channel remains open and the payment from one to the other does
not exceed its balance, Alice and Bob can repeatedly make any
number of transactions. Finally, Alice and Bob can choose to close
the channel if nomore transactions are needed. The �nal state of the
channel is committed to the chain, and both parties can withdraw
their balances.

O�chain networks. It is clearly impractical for a user to open a
payment channel with whoever it needs to transact with; the chan-
nel opening cost and the latency of doing this on the chain would
be prohibitive. Payment channel networks, or o�chain networks,
are therefore developed to support indirect payments between two
parties who do not have a payment channel. An o�chain network is

Alice Bob

Charlie4

4 1

5

Alice Bob

Charlie5

3 2

4

1

Figure 2: An indirect payment on a payment channel net-
work. Alice can pay Bob 1 satoshi through Charlie, but can-
not domore than 2 satoshis since the payment channel from
Charlie to Bob has a balance of 2 satoshis.

composed of many payment channels. Figure 2 shows an example of
a simple o�chain network with two payment channels. Two parties
can make a transaction so long as there is a directed path between
them and the payment amount is no larger than the minimum chan-
nel balance of the path. In order to guarantee the atomicity and
security of payments via multiple payment channels, an o�chain
network usually relies on the hash time-locked contracts (HTLC)
[27]. For example, if Alice wants to pay Bob 1 satoshi through Char-
lie as in Figure 2, HTLC guarantees that Charlie receives funds
from Alice if and only if Bob receives the payment from Charlie
successfully. Otherwise the funds are returned to the payer Alice.
HTLC also guarantees that either the balances of all channels on
the path are updated or none is updated after the transaction.

O�chain networks have seen rapid development over recent
years and is increasingly adopted in many scenarios. Lightning
Network [10], Raiden Network [11], and Ripple [9] are prominent
examples in practice. Lightning and Raiden are o�chain networks
for Bitcoin and Ethereum, two of the most popular cryptocurrencies.
Lightning for example has 2,700+ active nodes, 21,000+ channels,
and 560+ bitcoins (⇠$2M USD) network capacity as of January 2019
according to [8]. Ripple is another large o�chain network using its
own cryptocurrency called XRP as the main transaction medium.
Its network has 200+ enterprise customers including banks and
payment providers worldwide. All three o�chain networks allow
transactions involving multiple payment channels.

2.2 Motivation
We believe a sensible �rst step of investigating o�chain routing
is to understand the workloads carried by these newly emerged
networks, that is the cryptocurrency transactions. Surprisingly this
aspect has received little attention so far compared to other features
of o�chain networks such as their topologies [29].

We conduct a measurement study of the transactions in the Rip-
ple network, which to our knowledge is the only o�chain network
whose transaction data are publicly available. We use a dataset
from [2] that includes over 2.6 million transactions in Ripple from
January 2013 to November 2016. Each data entry includes sender,
receiver, volume, and time information. In addition, we crawl Bit-
coin’s onchain transactions as our second dataset. We believe the
characteristics of onchain and o�chain transactions are similar as
more onchain transactions are moving to o�chain networks for
faster turnaround and lower cost. We run a full Bitcoin node with

CoNEXT ’19, December 9–12, 2019, Orlando, FL, USA Peng Wang, Hong Xu, Xin Jin, and Tao Wang

(a) Ripple (b) Bitcoin

Figure 3: Payment size distributions for Ripple and Bitcoin
transactions.

Bitcoin Core2 to synchronize all blocks and collect all the transac-
tions (over 103 million) from its launch in January 2009 to October
2018. We exclude coinbase transactions which represent new coins
mined by the miners.

We now highlight two unique characteristics of cryptocurrency
transactions observed from the traces.

Payment sizes are heavy-tailed. We �rst investigate the pay-
ment size distribution. Figure 3 shows the CDF of payment size
in Ripple and Bitcoin traces. We observe that most payments are
small, while a few large payments contribute the most volume. For
Ripple, 10% of the payments are for balances of $1,740 USD or more
and they account for 94% of the total volume. The median payment
size is only $4.8 USD. For Bitcoin, 10% of payments larger than
8.9 ⇥ 107 satoshis constitute 94.7% of the total volume, while the
median payment size is only 1.293⇥106 satoshis. This is intuitive to
understand since in practice large transactions only happen among
a small group of enterprises and �nancial institutions. For example,
the transaction volumes between banks can be substantial, but the
trade frequency is relatively low. Most of the time transactions hap-
pen between individuals and merchants, such as money transfer
between friends and families, and purchases of goods and services.
These constitute the vast majority of the use of cryptocurrencies in
the same way traditional currencies are used.

The design implication of the heavy-tailed payment size is salient.
On one hand, small or mice payments are naturally less likely to
saturate a payment channel, and tend to be sensitive to the settle-
ment time. The settlement time is the amount of time elapsed from
when the payment is placed at the sender to the moment all funds
from the payment are received at the receiver. As such, they can
be delivered with high probability using just one or a few paths,
and the paths do not have to be carefully chosen to minimize the
delay. On the other hand, a large payment or elephant payment
consumes much more funds and using a single path may not be
su�cient. Elephant payments are more important to an o�chain
network as their successful delivery would greatly improve the
success volume (i.e., the total size of all successful payments) and
ratio (i.e., the percentage of successful payments over all payments).
The transaction fee in the o�chain network consists of a �xed base
fee and a liquidity fee proportional to the payment size. Thus mini-
mizing transaction fees is also meaningful to elephant payments
given their signi�cant volume. We thus believe a more delicate and

2https://bitcoin.org/en/full-node

(a) The CDF of percentage of
recurring transactions over all
transactions in a 24-hour period
across 1,306 days in Ripple.

(b) The CDF of percentage of
top-5 most frequent recurring
transactions over all recurring
transactions in a 24-hour period
across 465 days in Ripple.

Figure 4: Analysis of the recurring transactions in theRipple
trace.

optimized routing solution is justi�ed for elephant payments to
thoroughly consider all the factors involved. The solution needs
to strategically choose a good set of paths with enough capacity,
and carefully schedule the elephant payment across the paths with
varying fees. The increased settlement time and probing overheads
are acceptable given the low frequency of elephant payments.

Our separate treatment of elephant andmice payments ismarkedly
di�erent from prior work that treats all payments equally through
the same routing mechanism [24, 28–30]. As we will show, exploit-
ing this characteristic gives us more �exibility to improve success
volume and ratio of the network while maintaining the overheads.

Payments are highly recurrent and clustered.We next investi-
gate the relationship between the sender and receiver of the o�chain
transactions. Due to the lack of this information in the Bitcoin trace,
we only analyze the Ripple trace. We examine each of the 1,306 days
with recurring transactions the Ripple trace covers, and identify
the recurring transactions as those with the same sender-receiver
pairs within a 24-hour period.

We observe that the median percentage of recurring transactions
among all transactions of the day stands at 86% across 1,306 days
as shown in Figure 4a. Thus most of the transactions in Ripple
is actually recurring within a 24-hour time frame. Moreover, we
�nd that recurring transactions happen within a small set of users.
Among 1,306 days with recurring transactions, 465 days with no
fewer than 10 sender-receiver pairs having recurring transactions
are chosen. For each of the 465 days, we rank sender-receiver pairs
according to their number of recurring transactions and select top-
5 with the most frequent recurring payments. Figure 4b shows
that the number of recurring transactions from the top-5 sender-
receiver pairs accounts for over 70% of the daily transactions. These
properties again make intuitive sense since the real-world �nancial
relationship for most people is stable and clustered. One mostly
transacts with a small number of parties such as their favorite
online merchants and o�ine businesses (shops, diners, etc.) near
work and home, as well as their friends and family.

The design implication of recurring transactions and clustered re-
ceivers is also interesting. It allows the use of a routing table to store
the paths for the recurring receivers, so the path �nding process
can be simpli�ed to table lookups especially for mice payments. A
small routing table would be enough to cover most recurring trans-
actions due to their clustered nature. This is instrumental towards

Flash: E�icient Dynamic Routing
for O�chain Networks CoNEXT ’19, December 9–12, 2019, Orlando, FL, USA

reducing the overhead of processing (mice) payments without much
performance sacri�ce.

To quickly recap, the transaction characteristics presented here
enable us to explore a larger design space for o�chain routing, and
motivate our design of Flash which we now introduce.

3 DESIGN
Flash is a distributed online routing system that processes each
transaction as it arrives at the sender, because a centralized of-
�ine approach is inherently infeasible for decentralized o�chain
networks with constantly changing channel balances. Flash di�er-
entiates elephant and mice payments and applies di�erent rout-
ing algorithms in order to achieve a better performance-overhead
tradeo�. For elephants that have a signi�cant impact on overall per-
formance, Flash �rst adopts a modi�ed max-�ow algorithm to �nd
and probe paths with su�cient balance to satisfy their demands,
and then solves an optimization program to split the payment over
paths to minimize the transaction fees. For mice payments whose
demands are easy to satisfy, Flash uses a lightweight solution that
simply routes them randomly through a small set of precomputed
paths whenever possible in order to reduce the probing overhead.

3.1 Prerequisites
Flash’s design relies on two prerequisites about the o�chain net-
works.

Locally available topology. The topology of an o�chain net-
work, without the channel balance information, is fairly stable
and changes on an hourly or daily scale. This is because opening
or closing a payment channel requires onchain transactions which
take at least tens of minutes, and a channel usually remains in the
network after establishment. Therefore practical o�chain routing
protocols in Lightning and Raiden require each node to locally store
the topology of the o�chain network and periodically update it
using some gossiping protocols [5, 7]. Flash assumes similar mecha-
nisms are in place and the connectivity topology is locally available
at each node. Note the topology is a directed graph since payment
channels are bidirectional: funds can �ow in either direction and
channel balances on di�erent directions are di�erent.

Atomic multipath payments. To improve the network utiliza-
tion, Flash uses multipath routing whenever possible and assumes
the atomicity of multipath payments is guaranteed, similar to prior
work [30]. This can be achieved by mechanisms such as Atomic
Multipath Payments (AMP) proposed for Lightning [1]. Building
upon HTLC, AMP allows a payment to be split over multiple paths
while ensuring the receiver either receives all funds from several
partial payments, or gets nothing (i.e. payment fails). The design
and implementation of such a mechanism are beyond this paper.

3.2 Routing Elephant Payments
The design challenges for routing elephant payments are: (1) how
to �nd good paths with su�cient capacity to satisfy demand as
much as possible, and (2) how to carefully split the payment across
the paths in order to minimize the transaction fees.

Path �nding with modi�ed max-�ow.We discuss some straw-
man solutions to the �rst challenge on path �nding and why they

1 62

3

30
30 30

30

5

(a) k simple shortest paths share
the same bottleneck path

20 20

1 62

3

100
30 30

30

5
20 20

4 4
30 30

(b) k edge disjoint path routing is not
always effective

Figure 5: An illustrative example of common shortest path
schemes. Node 1 is the sender, and node 6 is the receiver. In
each scheme two paths are used, i.e. k = 2.

do not work, and then present Flash’s solution with a modi�ed
max-�ow algorithm.

Strawman solutions.With the network topology locally available,
a �rst attempt at the path �nding problem would be to simply
have the sender compute k good paths. Shortest paths, for example,
are a natural choice since they minimize the number of hops and
helps reduce transaction fees. However, restricting to shortest paths
may lead to severe underutilization when they share a common
bottleneck. To see this, we consider an example in Figure 5(a). Two
simple shortest paths from node 1 to 6 share the same bottleneck
link from node 1 to 2. Using them provides a total capacity of 30
while the other path of 1-5-4-6 is underutilized. To overcome this
one may consider edge-disjoint shortest paths, which are used in
Spider [30]. Yet they may not always work either especially when
the common bottleneck has abundant capacity. Figure 5(b) shows
that using 2 edge-disjoint shortest paths yields a total capacity of
50, while using 2 simple shortest paths that traverse from 1 to 2
yields a total capacity of 60 since the common link from 1 to 2 has
abundant capacity now.

It is thus important to consider channel capacity in path �nding
for elephant payments. This naturally motivates us to resort to max-
�ow algorithms [17]. A max-�ow algorithm such as Edmonds-Karp
[15] is used to �nd the maximum �ow between a pair of nodes
in a �ow network. However they cannot be directly applied to
o�chain networks. Max-�ow algorithms require a weighted graph,
meaning that the balance or capacity of all edges of the graph
should be known. This is infeasible in our problem: the channel
balance is dynamically changing in o�chain networks, and probing
each channel of each path whenever an elephant payment arrives
does not scale for a network with thousands of nodes and tens of
thousands of channels [8].

Flash’s solution. We thus develop a modi�ed max-�ow algorithm
based on Edmonds-Karp [15] to sequentially �nd k paths and their
maximum �ow without excessive overheads. Algorithm 1 shows
the pseudocode.

Each node has the network topologyG without capacity informa-
tion.When a new elephant arrives the sender s invokes Algorithm 1
to route it. It uses a capacity matrixC to record the probed channel
capacity of the paths, and a residual capacity matrix C 0 to record
the remaining capacity of channels as in Edmonds-Karp [15]. Both
C andC 0 are initialized to in�nity (lines 4–5 in Algorithm 1). It then
enters a loop with at most k iterations to �nd at most k paths. In

CoNEXT ’19, December 9–12, 2019, Orlando, FL, USA Peng Wang, Hong Xu, Xin Jin, and Tao Wang

Algorithm 1 Modi�ed Edmonds-Karp for elephant payment rout-
ing
1: Input: Topology graph G , a payment (s , t , d) from s to t with demand

d , maximum number of paths needed k
2: Output: Path set P , capacity matrix C
3: P = ;, f = 0 . Initialize maximum �ow f
4: C = 1 . Initialize capacity matrix C[n ⇥ n]
5: C0 = 1 . Initialize residual capacity matrix C0[n ⇥ n]
6: while |P | < k do . Find at most k paths
7: p = Breadth-First-Search(G ,C0, s , t) . Return a list of nodes on

path p
8: if p == ; then
9: break
10: Add p to P
11: Probe each channel on p to obtain their capacity Cp
12: Find the bottleneck capacity c = min Cp
13: f = f + c
14: for each edge (u , �) on p do
15: if C[u , �] = 1 then . Set channel capacity for the �rst time
16: C[u , �] = Cp [u , �]
17: C0[u , �] = Cp [u , �]
18: if C[� , u] = 1 then
19: C[� , u] = Cp [� , u]
20: C0[� , u] = Cp [� , u]
21: C0(u , �) = C0(u , �) � c . Reduce channel capacity
22: C0(� , u) = C0(� , u) + c . Increase capacity of the channel in

the reverse direction
23: if f � d then
24: return P ,C . Return paths found and capacity
25: else
26: return ;

each loop Flash �rst runs the Breadth-First-Search on topology G
with the residual capacity matrix C 0 to �nd a feasible shortest path
p with non-zero capacity (line 8), and adds p to the solution set P . It
then sends probes along p to obtain the capacity of each channel on
it, and obtains the bottleneck capacity c . This indicates that we can
send c on path p (line 14). It updates the capacity of channels that
have been probed for the �rst time in C according to the probing
resultsCp . It also updates the residual capacity of channels on path
p in the residual capacity matrix C 0 using c to re�ect the new �ow
found by p. After the loop terminates, Algorithm 1 returns the paths
P and capacity matrix C if the maximum �ow f over these paths
satis�es the payment demand d .

Compared to Edmonds-Karp with O(|V | |E |) iterations, our algo-
rithm ends with at most k iterations and k paths to probe when
there are at least k paths between s and t onG . This helps reduce the
probing overhead. We �nd that setting k between 20 to 30 provides
good performance in practical o�chain network topologies with
thousands of nodes and tens of thousands of channels. Also our
algorithm works without the capacity matrix as input by assuming
each channel has non-zero capacity. It is thus possible, though rare
in our evaluation, that our algorithm �nds a path but its e�ective
capacity is zero after probing. Flash will not send the payment along
this path. In the next iteration of path �nding, Breath-First-Search
function will skip the channel with zero capacity.

Path selection. Given a set of paths with su�cient capacity from
Algorithm 1, the next step is to determine how to route over them
to minimize the total transaction fees. The fee information is col-
lected during the probing process with the capacity information.
We take a principled approach and solve this using mathematical
optimization.

Speci�cally, we have the path set P and the capacity matrix C .
We represent the fee collected by a channel (u,�) with a charging
function fu ,� . We assume f is convex. Thus the fee amounts to
fu ,� (rp) if we route a partial payment of rp to (u,�). The objective
of the optimization program is to minimize the total fees subject to
constraints that the payment demandd is met, and channel capacity
is respected:

min
’
p2P

’
{(u ,�)}

a
p
u ,� fu ,� (rp) (1)

subject to
’
p2P

rp = d,

’
p2P

rpa
p
u ,� �

’
p2P

rpa
p
� ,u 6 C(u,�),8(u,�).

Here apu ,� indicates whether p uses channel (u,�) or not. Note that
partial payments on di�erent direction of the same channel can
o�set each other in terms of balance. It does not require any sort of
synchronization. When the capacity of the channel is changed, the
latest state is logged in the local ledger of the channel. Payments
can o�set the change later.

The optimization program (1) is a convex optimization and can be
solved using standard solvers quickly due to the small problem size
with k paths. According to the codebase of the Lightning Network
Daemon (LND) [5], the fee charging function is typically linear
with a �xed fee plus a volume-dependent component, which means
(1) is a simple linear program and even easier to solve.

3.3 Routing Mice Payments
The design challenge for mice payment routing is to simplify the
protocol and minimize overhead due to their large quantity. Ap-
plying elephant routing design here would be an overkill. We now
present our design for mice payments which also consists of path
�nding and path selection.

Path �nding. Each node maintains a routing table for mice pay-
ments. It contains paths for the unique receivers of this node. Upon
seeing a new receiver that does not exist in the routing table, the
node computes top-m shortest paths (i.e. using Yen’s algorithm
[36]) on the local topology G, and adds them to the routing table.
If the receiver is in the routing table, Flash simply re-uses the ex-
isting paths. Since most payments are recurring as explained in
§2.2, this design simpli�es path �nding into table lookups in most
cases without any computation. The recurring nature of mice also
ensures the routing table size is not too large. We use top-m shortest
paths wherem is much less than k the number of paths used for
elephant routing in §3.2, because mice payments do not require
much capacity, and typically a few shortest paths provide good
performance (m = 4 in our evaluation).

The routing table is periodically refreshed when the local net-
work topology G is updated (by the underlying gossip protocol):

Flash: E�icient Dynamic Routing
for O�chain Networks CoNEXT ’19, December 9–12, 2019, Orlando, FL, USA

all entries are re-computed using the latest G. Also when a pay-
ment encounters an inaccessible path with zero e�ective capacity
or no connectivity, Flash replaces it with the next top shortest path.
Timeouts are used to remove receivers and their entries that have
not been accessed for a long time to limit the routing table size.

Path selection. Withm shortest paths from the routing table, the
sender determines path selection using a trial-and-error loop. It
�rst sends the full payment along a random path p. If successful the
protocol ends. Otherwise, the sender probes p to �nd its e�ective
capacity cp and sends a partial payment of volume cp along p. It
then updates the remaining demand of the payment and continues
the iteration. This ensures low probing overhead since Flash only
probes when it is necessary and at mostm paths are probed. The
use of multiple paths also improves the success ratio of delivering
the payment. Instead of following a �xed order (say in descending
order of path length), Flash randomly picks the paths to better
load balance them without knowing their instantaneous capacities.
Lastly, whenm paths are exhausted and demand is not satis�ed,
Flash declares the payment fails.

4 SIMULATION
In this section, we evaluate the performance of Flash against exist-
ing o�chain routing algorithms using simulation. Our evaluation
aims to answer the following questions:

• How does Flash perform under realistic o�chain network
topologies and traces?

• How do channel capacity and network load a�ect Flash’s
performance?

• How e�ective is di�erentiating elephant and mice payments
in Flash?

• How e�ective is the mice payment routing algorithm?

4.1 Methodology

Setup. We implement o�chain network topologies and routing
schemes using the NetworkX package in Python [6] in the sim-
ulation. Our simulation focuses on the routing performance in a
large-scale real o�chain network, and does not concern the imple-
mentation of the underlying security mechanism (say HTLC).

We evaluate Flash with two real-world o�chain network topolo-
gies: Ripple and Lightning. We obtain crawls of Ripple’s active
nodes and channels from January 2013 to November 2016 from
[2]. This topology includes 93,502 nodes and 331,096 edges. We
remove nodes with only a single neighbor and channels with no
funds from the topology. The processed topology we use in the
simulation includes 1,870 nodes and 17,416 edges. The distribution
of funds on payment channels in Ripple is extremely skewed. All
schemes perform poorly in this scenario. In order to bootstrap the
network with a more balanced distribution, we redistribute the
funds by evenly assigning the total funds over both directions of
a channel. For Lightning topology we run the c-lightning [4]
node on mainnet and connect it to an existing node by opening
a channel with the node. We use commands listchannels and
listnodes to get information of nodes and channels as a snapshot
of the Lightning network on a particular day of December 2018.
The number of nodes is 2,511 and the number of channels is 36,016.

Since the lightning network preserves the privacy of channel bal-
ances, we are only able to get a bound on the balance of the channel
rather than the exact balance distribution. We thus evenly assign
funds over both directions of a channel, the same as what we do
for Ripple.

We generate payments by randomly sampling the Ripple trace for
the Ripple topology. Due to the lack of sender-receiver information
in the Bitcoin trace for Lightning, we randomly sample the Bitcoin
trace for transaction volumes, and sample a sender- receiver pair
from the Ripple trace and map it to nodes in the Lightning topology.
Payments arrive at senders sequentially.

Benchmarks.We compare four o�chain routing algorithms.
• Flash: Our routing algorithms. Unless stated otherwise, we
set the number of shortest paths for each receiver in mice
payment routing to 4, i.e.m = 4, and the number of paths
for elephant routing to 20, i.e. k = 20. The elephant-mice
threshold is set such that 90% of payments are mice. In §4.3,
we show how di�erent thresholds a�ect the performance.

• Spider [30]: The state-of-the-art o�chain routing algorithm
which considers the dynamics of channel balance. It balances
paths by using those with maximum available capacity, fol-
lowing a “water�lling” heuristic. It uses 4 edge-disjoint paths
for each payment.

• SpeedyMurmurs [29]: An embedding-based routing algo-
rithm that relies on assigning coordinates to nodes to �nd
short paths with reduced overhead. The number of land-
marks is 3 as [29] suggests.

• Shortest Path (SP): This is the baseline. SP uses the path with
the fewest hops between the sender and receiver to route a
payment.

Metrics. Similar to prior work [29, 30], we use success ratio, success
volume and number of probing messages as the primary metrics
in the simulation. The success ratio is de�ned as the percentage
of successful payments whose demands are met over all gener-
ated payments. The success volume describes the total size of all
successful payments. Before sending payments, the sender probes
the e�ective capacity of paths to the receiver (one probe message
per path). The number of probe messages describes the probing
overhead. We report the average results over 5 runs.

4.2 Overall Performance and Overhead
We now examine the performance and overhead of Flash with
di�erent settings of the o�chain network.

Performance with di�erent capacities. We �rst evaluate the
performance of Flash with various link capacities. The medium
channel capacity in Lightning is around 500,000 Satoshi and in
Ripple is 250 USD. As o�chain networks are still in their infancy
and the capacity provided may be limited, we scale the link capacity
by a factor of 1 to 60 in the simulation similar to existing work
[29, 30]. The number of transactions used is �xed at 2000. Figure 6
shows the success ratio and volume results. For both Ripple and
Lightning, Flash performs ⇠20% better than SpeedyMurmurs and
Shortest Path on success ratio. Flash and Spider are both able to
ful�ll most mice payments. As the success ratio is dominated by
mice payments, Flash and Spider achieve similar performance. For

CoNEXT ’19, December 9–12, 2019, Orlando, FL, USA Peng Wang, Hong Xu, Xin Jin, and Tao Wang

(a) Succ. ratio in Ripple (b) Succ. volume in Ripple (c) Succ. ratio in Lightning (d) Succ. volume in Lightning

Figure 6: Performance results with varying link capacities in Ripple and Lightning.

(a) Succ. ratio in Ripple (b) Succ. volume in Ripple (c) Succ. ratio in Lightning (d) Succ. volume in Lightning

Figure 7: Performance results with varying number of transactions in Ripple and Lightning.

(a) Ripple (b) Lightning

Figure 8: Probing message comparison results.

success volume, Flash performs up to 4.5x better over Shortest Path,
5x better than SpeedyMurmurs, and 2.3x better than Spider. The
success volume bene�ts of Flash are due to its delicate elephant
payment routing that uses more capacity and carefully schedules
the partial payments to deliver them successfully. As the network
capacity increases, we observe more successful payments and thus
the increase of both success ratio and volume. Flash consistently
outperforms other schemes.

Performancewith varying transaction numbers.We also vary
the number of transactions �owing into the network to emulate
di�erent loads. The capacity scale factor is 10. With the increase
of the number of transactions, the success ratio of all schemes
degrades as shown in Figure 7. One possible reason is that, as more
payments, especially elephant payments are accepted, channels are
easier to be saturated in one direction. Although the number of
successful payments keeps increasing, the probability to ful�ll a
payment decreases. Observe that Flash consistently outperforms
other schemes. It shows signi�cant bene�ts on success volume:
the performance gains over Shortest Path, SpeedyMurmurs, and
Spider are up to 4.7x, 6.6x, and 2.6x, respectively. We also observe
that Flash’s performance gains increase with more transactions,
suggesting that it scales better than other solutions.

Probing message overhead. We have demonstrated the perfor-
mance improvement of Flash in terms of success ratio and volume.
We now evaluate the number of probing messages of Flash to see if
our algorithms can curb the overhead of routing. Figure 8 shows
the comparison results with 2000 transactions and a capacity scale
factor of 10. Note that SpeedyMurmurs and Shortest Path are static
routing schemes without probing.Without probing they su�er from
poor performance as discussed just now. We thus exclude them
from the comparison here. The number of probing messages along
a path is proportional to the number of hops of the path.

Observing from Figure 8, compared to Spider which also uses
multiple paths, Flash saves 43% message overhead in Ripple and
37% in Lightning. Spider treats mice and elephant �ows the same
and always uses 4 shortest paths. Flash di�erentiates mice and
elephants: though it uses many more paths (20) for elephants, it
uses at most 4 paths for the vast majority of the mice payments
in order to balance the performance-overhead tradeo�. Moreover,
Flash’s mice payment routing relies on a trial-and-error approach
to further reduce probing overhead: it only probes a path when it
cannot deliver the payment in full, which usually does not happen
for mice payments. We observe that most mice payments are de-
livered with 1 or 2 paths. Thus the results here demonstrate that
Flash indeed achieves a better tradeo� between performance and
overhead compared to state of the art.

4.3 Flash Microbenchmarks
We now take a deep dive into Flash by evaluating microbenchmarks
about the impact of some key parameters to its design. Through
the microbenchmarks, we also verify our design choices. In all ex-
periments here we use 2000 transactions in each run and a capacity
scale factor of 10 unless stated otherwise.

Impact of transaction fee optimization. As mentioned in §3.2,
Flash splits an elephant payment over multiple paths to minimize

Flash: E�icient Dynamic Routing
for O�chain Networks CoNEXT ’19, December 9–12, 2019, Orlando, FL, USA

(a) Lightning (b) Ripple

Figure 9: Impact of transaction fee optimization in Flash.

(a) Ripple (b) Lightning

Figure 10: Impact of threshold value in Flash.

the total transaction fees. We now validate the e�ectiveness of this
design. To perform a fair comparison, we realize Flash without
transaction fees minimization as the baseline, where the paths are
used sequentially as they are found by our modi�ed Edmonds-Karp
algorithm until the demand is met. We compare the unit transaction
fees (in percentage) to avoid the impact of volume on the result.
Note the unit fee is obtained over all payments, not just elephant
payments. We set 90% channels with random fees from 0.1% to 1%
of the volume and 10% channels from 1% to 10%. Observe from
Figure 9 that Flash reduces the transaction fees by around 40% on
average in both Ripple and Lighting compared to not performing
fee minimization.

Impact of threshold.We �rst show how the choice of threshold
impacts the performance, i.e. success volume of payments. Here we
vary the threshold value such that the percentage of mice payments
varies from 0% to 100%. Obviously a higher percentage with a larger
threshold results in more payments classi�ed as mice. Observe from
Figure 10 that the success volume of mice payments remains stable
until the percentage of mice reaches 80%–90%. That is, when most
payments are treated as mice with Flash’s simple routing algorithm,
their success volume is onlymarginally smaller thanwhen everyone
is treated by the elephant routing algorithm. However, the probing
overhead increases as the percentage of mice payments decreases
and probing is more aggressively used. This clearly demonstrates
that our design choice of di�erentiating mice and elephant is e�ec-
tive: it signi�cantly reduces the probing overhead without much
performance degradation for most mice payments. This also justi-
�es our setting of threshold with 90% mice �ows which achieves a
good performance-overhead tradeo�.

Impact of number of paths per receiver for mice routing.We
now investigate the bene�t of using just a few shortest paths per
receiver in routing mice payments. We only show results with the
Ripple trace for brevity since results with Lightning trace shows

(a) Success volume of mice pay-
ments

(b) Probing overhead of mice
payments

Figure 11: Impact of number of paths per receiverm formice
payment routing in Flash. Here Flash routes mice payments
in the same way as elephant payments whenm = 0.

similar trends. Here we varym, the number of paths for a receiver in
the routing table for mice payments. The case withm = 0 represents
the performance upper bound when we route mice payments in the
same way as elephant payments in §3.2, which clearly o�ers the
best performance in success volume. Figure 11(a) shows that just a
few paths per receiver leads to fairly good performance compared
to routing them as elephants: the gap is within 15% withm = 6.
The performance of Flash stabilizes whenm exceeds 6. Figure 11(b)
shows that using a few routes achieves at least ⇠12x less probing
overhead. These results con�rm that our mice payment routing
design is e�ective in reducing probing overhead while ensuring
satisfactory performance.

5 TESTBED EVALUATION
We conduct testbed evaluation to further investigate Flash’s design.

5.1 Implementation
We start by describing our prototype implementation.

Overview. Since we focus on routing, we take a minimalist ap-
proach and build a simpli�ed prototype o�chain routing system
without mechanisms such as gossiping protocols for topology main-
tenance and HTLC for security. We use Golang to implement the
prototype with TCP for network communication. The prototype
reads the network topology from a local �le at launch time. Upon
seeing a new transaction, it runs the routing algorithm and sends
it out accordingly.

Most importantly, we implement an o�chain routing protocol in
our prototype that realizes three essential functions required by any
routing algorithm: source routing, probing, and atomic payment
processing. We describe their details in the following.

Source routing is the basic service of o�chain networks since
the probing process and payment routing happen over a speci�ed
path of multiple hops in the overlay network. We implement a
simple source routing scheme by embedding the complete path
into every message a sender initiates. Table 1 shows the message
format used in our prototype, where the Path �eld contains the
path information. Upon receiving a message, a node parses this
�eld and sends it to the next-hop after necessary processing as
indicated in the Type �eld.

CoNEXT ’19, December 9–12, 2019, Orlando, FL, USA Peng Wang, Hong Xu, Xin Jin, and Tao Wang

(a) Success volume (b) Success ratio (c) Overall processing delay (d) Mice processing delay

Figure 12: Testbed experiment results of the 50-node network.

(a) Success volume (b) Success ratio (c) Overall processing delay (d) Mice processing delay

Figure 13: Testbed experiment results of the 100-node network.

Field Description
TransID A unique ID of a (partial) payment
Type Message type
Path Path of this message

Capacity Probed channel capacity
Commit Committed amount of funds for this payment

Table 1: Message format for source routing in our prototype.

Probing is needed for o�chain routing algorithms to collect the
ever-changing channel balance. A node initiates probing by con-
structing a PROBE message for the path it is interested in. The inter-
mediate nodes append the Capacity �eld in the message with their
current balance. To return the probed information, the receiver
modi�es the message type to PROBE_ACK, replaces the Path �eld
with the reversed version of the forward path, and sends it back all
the way to the sender.

Atomic payment processing. Last but not least, we implement
a two-phase commit protocol to realize atomic payment process-
ing without complex security mechanisms like HTLC [27]. This
is necessary for two reasons. First, due to network dynamics, it
is possible that a payment fails on its path because the balance of
some channel has changed after it was last probed by the sender.
Thus con�rmation is required for the sender to know the status
of the payment and ensure the atomicity of balance update on the
path. Second and more interestingly, with multipath routing, a pay-
ment is successful if and only if all its sub-payments are successful
[10, 11]. This necessitates the need for two-phase commit from
distributed systems, where the protocol only commits the payment
when all its sub-payments have been con�rmed on their paths.

Our two-phase commit protocol works as follows for the general
case of multipath routing. In the �rst phase, the sender prepares
a COMMIT message for each sub-payment and sends them out. An

intermediate node determines if its current balance can handle
this sub-payment. If yes, it decreases its balance by the volume
speci�ed in the COMMIT message and forwards the message to the
next hop. The receiver constructs a COMMIT_ACKmessage by adding
the success information in the payload and reversing the path. The
sender recognizes this sub-payment to be successful upon receiving
the COMMIT_ACK. In case an intermediate node does not have enough
balance, it constructs a COMMIT_NACK with the reversed path and
immediately sends it back to its previous hop. The sender recognizes
the sub-payment to be failed afterward.

After the results of all sub-payments are back, the protocol enters
the second phase. When all sub-payments are successful, the sender
sends a CONFIRM message for each sub-payment along their paths.
The intermediate nodes simply relay the CONFIRM message. The
receiver would send a CONFIRM_ACK along the reverse path back to
the sender. Now each intermediate node processes CONFIRM_ACK
by adding the committed funds of this sub-payment to the channel
in the reverse direction, in order to make the bidirectional channel
balances consistent. With all CONFIRM_ACK received, the sender con-
siders this payment successful. In case at least one sub-payment is
unsuccessful in the �rst commit phase, the sender sends a REVERSE
message for each sub-payment. All intermediate nodes then add
back the committed funds to the channel in the forward path, and
the receiver sends a corresponding REVERSE_ACK to indicate that
everyone has been informed.

5.2 Experiment Setup
Our evaluation is conducted on a server machine with a 10-core
Intel E5-2640v4 CPU and 64GB DDR4-2400 memory. For simplicity,
we represent each node of an o�chain network as a single process
running our Golang prototype. Each process is bound to a unique
IP address and port number tuple.

Flash: E�icient Dynamic Routing
for O�chain Networks CoNEXT ’19, December 9–12, 2019, Orlando, FL, USA

We implement our routing algorithms described in §3 in our
prototype. We also implement two baseline routing algorithms:
Spider as in [30] and a simple shortest path scheme (denoted as SP)
as described in §4.1.

The network topology follows the Watts Strogatz graph [34].
The Watts Strogatz graph exhibits short path lengths and high
clustering coe�cients which is a good �t to generate topologies
for o�chain networks. This graph was also used for evaluation
in previous work on o�chain routing like Flare [28]. We generate
two topologies with 50 and 100 nodes, respectively. The capacity
of each channel is set randomly from an interval which varies
from [$1000, $1500), [$1500, $2000), to [$2000, $2500). We generate
10,000 transactions whose volume follows the Ripple trace and
randomly select the sender-receiver pairs.3 For Flash the payment
size threshold is set such that 90% of transactions are mice, the
number of paths for elephant routing k is 20, and the number of
shortest paths for mice routingm is 4. Spider uses 4 edge-disjoint
shortest paths as proposed in [30]. Each scheme is evaluated in 5
independent runs. Results are shown with min-mean-max bars.

5.3 Results
With experiments under di�erent network scales (50-node and 100-
node), we demonstrate the consistent performance gains from Flash.
We can observe from Figures 12a and 13a that the success volume of
Flash is much larger than Spider, 42.5% and 34.4% on average for the
50-node and 100-node topologies, respectively. This demonstrates
the e�ectiveness of our routing algorithms which select a good set
of paths to improve throughput. As shown in Figures 12b and 13b,
Flash’s success ratio is slightly worse (5.6% and 8.8% on average,
respectively) than Spider and is better (36.3% and 14.8% on average,
respectively) than SP. The reason Flash has lower success ratio than
Spider is that Spider uses water�lling to balance the utilization of
multiple paths and creates better chances for mice payments to go
through. Flash does not consider load balance for mice payments
in the design in order to achieve low probing overhead.

Next, we investigate overhead. Instead of messaging overhead,
we measure the average processing delay of a transaction in our
prototype as the metric of overhead. We normalize the results by
the average processing delay of SP, the simplest baseline algorithm.
From Figures 12c and 13c, we can see that Flash’s processing delay is
on average 19.4% and 19.2% smaller than Spider for the 50-node and
100-node topologies, respectively. Further, we look at the processing
delay of mice payments that generally require faster settlement
time. As plotted in Figures 12d and 13d, Flash is on average 26.4%
and 26% faster than Spider in the two topologies, respectively. This
con�rms that our mice payment routing algorithm reduces the
probing overhead and thus the processing delay signi�cantly.

6 RELATEDWORK
O�chain routing emerges only recently in 2016. The �rst o�chain
routing algorithm is proposed in the design draft of Lightning net-
work [27]. It routes payments to paths using a BGP-like system and
maintains a global routing table. Tominimize the routing state, Flare
[28] proposes that nodes only maintain neighbors within a certain
hop distance. When routing a payment, the sender exchanges the
3We ensure there exists at least one path from sender to receiver.

neighbor information with the receiver to construct complete paths.
Besides, each node �nds some random beacon nodes to supplement
its view of the network.

To further reduce the message overhead in path �nding, Silen-
tWhispers [24] utilizes landmark-centered routing. It performs pe-
riodic Breadth-First-Search to �nd the shortest path from the land-
marks to the sender and receiver. All paths need to go through the
landmarks, which makes some paths unnecessarily long. Speedy-
Murmurs [29] proposes embedding-based routing to assign coor-
dinates to nodes and �nd shortcuts that reduce the average path
lengths.

The above routing algorithms fall into static routing, which does
not consider payment channel dynamics and leads to poor through-
put performance. Revive [22] and Spider [30] take the dynamic
channel balances into consideration and propose centralized of-
�ine routing algorithms to maximize the throughput or success
volume of payments. As we discussed centralized schemes have
high probing overhead and do not work for decentralized o�chain
networks.

Compared to existing work, Flash is the �rst solution that consid-
ers the characteristics of payments in o�chain network in order to
achieve a better balance between the path optimality and probing
overhead. Flash’s approach of di�erentiating elephant and mice
payments are akin to past work on �ow scheduling in datacenter
networks (DCNs), such as Hedera [13] and DevoFlow [16]. Other
e�ective approaches for DCNs, such as congestion aware load bal-
ancing [14, 33] and �ne-grained routing [19, 26, 31], may also pro-
vide insights for o�chain routing solutions. The key di�erences
are that, an o�chain network topology is highly irregular while a
DCN topology is usually a Clos, and the channel balance is highly
�uctuating while the link capacity is �xed and abundant in a DCN.
We believe how to learn from these proven ideas in DCN for better
o�chain routing designs would be an interesting direction of future
work with much potential.

7 CONCLUSION
We presented Flash, a new routing solution that e�ciently delivers
payments over o�chain networks. By studying the characteristics
of payments in real o�chain networks, we �nd that payment sizes
are heavy-tailed, and most payments are recurring. Flash thus dif-
ferentiates the treatment of elephant and mice payments. It uses a
modi�ed max-�ow algorithm to provide elephant payments with
su�cient path capacity, and routes mice payments by a routing
table with just a few shortest paths to reduce probing overhead.
Through trace-driven simulations and prototype implementation,
we demonstrated that Flash signi�cantly outperforms existing solu-
tions especially on success volume, while maintaining low probing
overhead.

ACKNOWLEDGMENTS
We thank our shepherd Matteo Varvello and the anonymous re-
viewers for their comments that improved the paper. The work is
supported in part by the Hong Kong RGC GRF (CityU 11210818).

CoNEXT ’19, December 9–12, 2019, Orlando, FL, USA Peng Wang, Hong Xu, Xin Jin, and Tao Wang

REFERENCES
[1] 2018. Atomic Multi-path Payment. https://lists.linuxfoundation.org/pipermail/

lightning-dev/2018-February/000993.html.
[2] 2018. Ripple transaction trace. https://crysp.uwaterloo.ca/software/

speedymurmurs/.
[3] 2019. Bitcoin. https://bitcoin.org/en/.
[4] 2019. c-lightning Daemon. https://github.com/ElementsProject/lightning/tree/

master/lightningd.
[5] 2019. Lightning Network Daemon. https://github.com/lightningnetwork/lnd.
[6] 2019. NetworkX. https://networkx.github.io/.
[7] 2019. Raiden Network Daemon. https://github.com/raiden-network/raiden.
[8] 2019. Real-Time Lightning Network Statistics. https://1ml.com/statistics.
[9] 2019. Ripple. https://ripple.com/.
[10] 2019. The Lightning Network. https://lightning.network/.
[11] 2019. The Raiden Network. https://raiden.network/.
[12] 2019. Transaction Rate of Bitcoin. https://www.blockchain.com/en/charts/

transactions-per-second.
[13] Mohammad Al-Fares, Sivasankar Radhakrishnan, Barath Raghavan, Nelson

Huang, and Amin Vahdat. 2010. Hedera: Dynamic Flow Scheduling for Data
Center Networks. In Proc. USENIX NSDI.

[14] Mohammad Alizadeh, Tom Edsall, Sarang Dharmapurikar, Ramanan
Vaidyanathan, Kevin Chu, Andy Fingerhut, Vinh The Lam, Francis Ma-
tus, Rong Pan, Navindra Yadav, and George Varghese. 2014. CONGA: Distributed
Congestion-Aware Load Balancing for Datacenters. In Proc. ACM SIGCOMM.

[15] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Cli�ord Stein.
2009. Introduction to Algorithms. MIT Press.

[16] Andrew R. Curtis, Je�rey C. Mogul, Jean Tourrilhes, Praveen Yalagandula, Puneet
Sharma, and Sujata Banerjee. 2011. DevoFlow: Scaling Flow Management for
High-performance Networks. In Proc. ACM SIGCOMM.

[17] Lester Randolph Ford and Delbert R Fulkerson. 1956. Maximal �ow through a
network. Canadian Journal of Mathematics 8 (1956), 399–404.

[18] Yossi Gilad, RotemHemo, Silvio Micali, Georgios Vlachos, and Nickolai Zeldovich.
2017. Algorand: Scaling byzantine agreements for cryptocurrencies. In Proc. ACM
SOSP.

[19] Keqiang He, Eric Rozner, Kanak Agarwal, Wes Felter, John Carter, and Aditya
Akella. 2015. Presto: Edge-based Load Balancing for Fast Datacenter Networks.
In Proc. ACM SIGCOMM.

[20] Chi-Yao Hong, Srikanth Kandula, Ratul Mahajan, Ming Zhang, Vijay Gill, Mohan
Nanduri, and RogerWattenhofer. 2013. Achieving High Utilization with Software-
Driven WAN. In Proc. ACM SIGCOMM.

[21] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon Ong, Leon Poutievski, Arjun
Singh, Subbaiah Venkata, Jim Wanderer, Junlan Zhou, Min Zhu, Jon Zolla, Urs

Hölzle, Stephen Stuart, and Amin Vahdat. 2013. B4: Experience with a Globally-
Deployed Software De�ned WAN. In Proc. ACM SIGCOMM.

[22] Rami Khalil and Arthur Gervais. 2017. Revive: Rebalancing o�-blockchain pay-
ment networks. In Proc. ACM CCS.

[23] Loi Luu, Viswesh Narayanan, Chaodong Zheng, Kunal Baweja, Seth Gilbert,
and Prateek Saxena. 2016. A secure sharding protocol for open blockchains. In
Proc. ACM CCS.

[24] Pedro Moreno-Sanchez, Aniket Kate, and Matteo Ma�ei. 2017. SilentWhispers:
Enforcing Security and Privacy in Decentralized Credit Networks. In Proc. NDSS.

[25] Satoshi Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash system. Technical
Report (2008). https://bitcoin.org/bitcoin.pdf

[26] J. Perry, H. Balakrishnan, and D. Shah. 2017. Flowtune: Flowlet Control for
Datacenter Networks. In Proc. USENIX NSDI.

[27] Joseph Poon and Thaddeus Dryja. 2016. The bitcoin lightning network: Scalable
o�-chain instant payments. Technical Report (2016). https://lightning.network/
lightning-network-paper.pdf

[28] Pavel Prihodko, Slava Zhigulin, Mykola Sahno, Aleksei Ostrovskiy, and Olaoluwa
Osuntokun. 2016. Flare: An approach to routing in lightning network.White Paper
(2016). https://bitfury.com/content/downloads/whitepaper_�are_an_approach_
to_routing_in_lightning_network_7_7_2016.pdf

[29] Stefanie Roos, Pedro Moreno-Sanchez, Aniket Kate, and Ian Goldberg. 2018.
Settling Payments Fast and Private: E�cient Decentralized Routing for Path-
Based Transactions. In Proc. NDSS.

[30] Vibhaalakshmi Sivaraman, Shaileshh Bojja Venkatakrishnan, Mohammad Al-
izadeh, Giulia Fanti, and Pramod Viswanath. 2018. Routing Cryptocurrency with
the Spider Network. In Proc. ACM HotNets.

[31] Erico Vanini, Rong Pan, Mohammad Alizadeh, Parvin Taheri, and Tom Edsall.
2017. Let It Flow: Resilient Asymmetric Load Balancing with Flowlet Switching.
In Proc. USENIX NSDI.

[32] Jiaping Wang and Hao Wang. 2019. Monoxide: Scale Out Blockchain with
Asynchronized Consensus Zones. In Proc. USENIX NSDI.

[33] Peng Wang, Hong Xu, Zhixiong Niu, Dongsu Han, and Yongqiang Xiong. 2016.
Expeditus: Congestion-aware Load Balancing in Clos Data Center Networks. In
Proc. ACM SoCC.

[34] Duncan J Watts and Steven H Strogatz. 1998. Collective dynamics of ‘small-
world’networks. Nature 393, 6684 (1998), 440.

[35] Gavin Wood. 2014. Ethereum: a secure decentralized transaction ledger. http:
//gavwood.com/paper.pdf.

[36] Jin Y Yen. 1971. Finding the k shortest loopless paths in a network. Management
Science 17, 11 (1971), 712–716.

[37] Mahdi Zamani, Mahnush Movahedi, and Mariana Raykova. 2018. RapidChain:
scaling blockchain via full sharding. In Proc. ACM CCS.

