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Abstract
Speeding up network updates is crucial to maintain high agility

and to react quickly to network failures. In this paper, we present
CATALYST—a new design to reduce the network update time. We
observe that networks offer a power of choice, where there are many
equally-good alternative paths that traffic flows can be assigned to,
which is facilitated by redundancy in networks. CATALYST exploits
this power of choice to assign flows to alternative paths to merge
stages in the dependency graph (that captures the update plan), which
in turn reduces the total update time. Furthermore, we observe that
because of the prevalence of switch stragglers—switches that un-
expectedly take longer time to update, simply assigning a flow to a
single (shortest) path is not an optimal design as even a single switch
straggler can substantially increase the update time. Thus, the second
principle in CATALYST is to compute multiple paths for individual
flows offline, among which one would be selected at runtime based
on temporal switch conditions, in order to enable a fast update. Our
evaluation using a load-balancer setting in a data center network
shows that CATALYST effectively reduces the total update time by
1.14–2.15×.
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1 Introduction
Centralized network control provides many benefits over tradi-

tional distributed control, from improving network utilization [8, 9],
to enforcing policies [5] and reducing network energy usage [7].
The effectiveness of centralized control systems depends on how
quickly they can adapt the data plane to network events like traffic,
policy and topology changes. For example, B4 triggers data plane
updates 540 times a day on average [9]. This puts a lot of burden on
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the control system to quickly compute a new network routing plan
(called network state) and update the network accordingly.

Existing centralized control systems deal with network adapta-
tions in two steps [8, 9, 13]. In the first step, they compute a target
state, which assigns paths to flows to optimize an objective function
(e.g., minimizing average path length or maximizing total through-
put) under topology constraints; in the second step, they compute
a plan to update the network to the target state. It is important to
update the network as fast as possible while providing consistency
guarantees for the update period, e.g., no loops, no blackholes and no
link congestion [15, 17]. To avoid violating the consistency require-
ments, the network update often has to be performed in multiple
stages rather a than single shot [8–10, 14]. As shown in production
networks like B4, computing a target state is relatively fast, which
takes between 0.1-1 second, while updating the network takes 3-5×
more time in the median case [9].

Many solutions have been proposed to improve the speed of net-
work updates using dynamic scheduling [10], verification tools [21],
and through incremental updates [12]. However, all these network
update solutions make one assumption — the target state is given,
and cannot be changed at runtime. This assumption unnecessarily
restricts network updates. If a target state is in itself onerous, then
there is little an updater can do to reduce the update time. In contrast,
we raise a question in this paper: can we allow some flexibility in the
selection of the target state to make the update faster?

To that extent, we design CATALYST, a new approach to acceler-
ate network updates. Instead of sticking with a single target state,
CATALYST, first creates many choices of target states offline that
are close-to-optimal but are faster to update. Then online, CATA-
LYST dynamically selects one target state depending on the runtime
conditions to speed up the update.

The first idea in CATALYST is to choose a target state that has
fewer stages in the dependency graph. A dependency graph captures
the dependencies between individual update operations, in order to
meet the consistency requirements for a network update [10, 15]. It
usually contains multiple stages, and the number of stages dominates
the update time. We observe that because networks are typically
provisioned with redundancy, there are multiple near-optimal paths
to place a flow. For example, FatTree offers multiple paths of equal
lengths between every pair of racks, or WAN topologies offer many
equal-cost paths [9]. Carefully moving a flow to an alternative path
may resolve a dependency between two flows and thus merge two
stages. We leverage this flexibility to find a target state with fewer
stages and speed up network updates.

However, because of switch stragglers, a new target state with
fewer stages may not always be faster to update to if such target
state encounters a straggler, whereas the original target state does
not encounter a straggler. A switch straggler takes much longer time
(e.g., 10×) to complete an update operation than other switches [9,
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Figure 1: Initial, target network states with network update plans. fx : t denotes x-th flow requires t units of bandwidth. The link
capacity is 10 units. Note that link S2-S5 cannot support the traffic in (a). (c) shows faster update plan when f2 is routed differently
(through S2-S3-S5 – red line). S in update plan denotes “start”.

10]. An update involving a switch straggler can take a long time,
even if it has fewer stages. The challenge is that a switch straggler
can be temporary and thus is hard to predict beforehand.

To approach this uncertainty, our second idea in CATALYST is
to compute multiple alternative paths for a flow offline, and then
choose one of them online depending on the runtime conditions.
While choosing the multiple paths (per flow), we want to reduce the
number of switches common across the paths to limit the impact of
straggler switches. We show that this problem can be formulated
as a max-cover [2] problem, which is NP-hard but exists many ap-
proximation algorithms. To choose one path online among multiple
alternative paths, we present reactive and speculative approaches that
try different paths in series and parallel respectively (§4). We show
the trade-off among these approaches in terms of update time and
resource reservation overhead. We choose the speculative approach
for its shorter update time.

In summary, we introduce the idea of using single and multiple
alternate paths to speed up network updates: (i) we show how to
compute a single alternative path for individual flows at scale and
prove that merging the stages (in dependency graph) is always ex-
pected to reduce the total update time; (ii) we show how to compute
multiple alternate paths using variants of well-known max-cover and
bin-packing problems; (iii) we present a trade-off in update time
and efficiency in the speculative and reactive approaches in choosing
a path during run-time; (iv) our evaluation using a load-balancer
setting in a data center network shows that CATALYST speeds up the
network updates by 1.14-2.15×.

2 Catalyst Overview
In this section, we first briefly present background on existing net-

work update schedulers, and then make a case for using alternative
paths to improve network update speed.

2.1 Background on Network Updates
The network state is updated frequently to adapt to a variety of

dynamics including changing traffic volumes, failures and policies.
The network state includes the routes to the individual flows. Existing
controllers [8, 9, 11, 13] first calculate the target state (target paths
for individual flows) that maximizes an objective function while
satisfying some policies. For example, B4 and SWAN maximize
the WAN utilization, while ensuring the policies, such as no traffic
blackholes or max-min fairness. In the second step, the network is
updated from its current state to the target state while satisfying
consistency properties, e.g., no loops or congestion during updates.

The goal of the update step is to update the network safely and
quickly. Once the initial and a target states are given, the fastest way
to update (add/remove/edit paths) is to apply all update operations in
one shot. However, such approach can violate consistency require-
ments (e.g., transient congestion, loops and traffic blackholes) [17].
The consistency requirements impose dependencies on the order on
which network updates can be applied. For example, for congestion
freedom, a new flow cannot be added before an old flow is removed.
Many solutions have been proposed to speed up network updates to
meet consistency properties [10, 12, 21]. Based on the dependencies,
these approaches construct a dependency graph, where each stage
consists of a set of updates that can be applied in parallel, whereas
updates in one stage cannot be started until all operations in the prior
stages have completed. As a result, the total update time depends
on the number of stages in the dependency graph. As reported in
B4, the network update takes 3-5x more time compared to the target
state computation for Traffic Engineering (the computation takes
0.3 seconds in the median case). Similar results are also reported in
SWAN [8] and Dionysus [10].

2.2 The Case for Alternative Paths
Existing controllers decouple target state computation from net-

work updates [8, 9, 11, 13]. They make one assumption — the target
state given to the network updater is fixed and cannot be changed.
Under this assumption, if the target state is computed such that
the update plan is onerous, then there is little the updater can do
to speed up the network update. Target state computation may in
fact end up with a state with high update latency because of two
reasons. (i) The goal of the target state computation is to optimize
an objective function (e.g., maximize WAN utilization, minimize
average latency), but not about optimizing the update latency. As
shown in Fig. 1, flow f2 has two paths, S2-S1-S5 and S2-S3-S5 that
are equally optimal (same number of hops), and path with longer
update time (S2-S1-S5) can be chosen. (ii) Importantly, in many
cases [8, 9], the number of stages that govern the update speed can
only be calculated once the entire target state for all flows is known.
Thus, the target state computation may not even account for the
update speed during computation.

Our key observation is that production networks are usually provi-
sioned with redundancy to accommodate failures. Such redundancy
provides many alternative paths to place flows without sacrificing
the optimality of the target state. For example, data center topologies
like FatTree contain multiple equal-length paths between two racks
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which can be used to place flows. Similarly, wide area networks
also have multiple paths between two data centers which provides
flexibility for flow placement. Thus, the key idea in CATALYST is
to reassign flows to these alternate paths to merge the stages in the
dependency graph. For example, as shown in Fig. 1(c), if the target
state is changed to the one where f2 is assigned to path S2-S3-S5
(red line), the network update can be made faster (see update plan in
Fig. 1(c)) while still providing same optimality. In §2.3, we prove
that merging the stages is always expected to improve update time.

Moreover, if one alternative path can be found, then there are
chances that more than one alternative paths can be found that meet
the goals (e.g., multiple equal-lengths paths in datacenter network).
In such cases, a natural question is whether we need multiple alterna-
tive paths. As shown in Dionysus [10], switches straggle, i.e., some
switches occasionally take longer time to update the rules compared
to other switches. The distribution of the update time exhibits a
long tail, where the update time at 90th percentile takes 10× of the
median [10]. Thus, it may be possible that a single alternative target
state that contains a few stages may turn out to be a slow one when
installing updates at the runtime due to straggling switches. Thus, we
argue that multiple target states should be computed offline, and the
updater should dynamically choose one among them at the runtime
to reduce the update time. This idea is synergistic with the principle
of dynamic updates in Dionysus: by making more candidate target
paths available for individual flows, it only increases the available
paths to reach a target state faster.

Also, compared to prior work, CATALYST is complimentary to
FFC [13], which assigns traffic to multiple tunnels to reduce the
impact of failures. CATALYST uses existing multiple paths to speed
up the network updates. In contrast to ESPRES [16] that leverages
inherent independence among the network updates with respect to
the traffic, CATALYST creates more opportunities to exploit such
independence. In contrast to the speculative task execution in big data
analytic systems [3] or tail latency reduction [19, 20], CATALYST

focuses on reducing damage from stragglers in network update.

2.3 Is Merging Stages Always Helpful?

The key idea in CATALYST to is to merge the stages in a de-
pendency graph. Merging stages affects network update latency in
opposite ways. It may seem natural to reduce number of stages to
reduce network update latency. However, note that, when two stages
are merged, the number of updates in the merged state also increases,
which increases the probability of a straggler, which can potentially
inflate the network update latency. Thus, an important question is
whether such merging is always expected to improve the overall
update latency. As we show in this section, the answer is always yes.

We use the following probabilistic model. Let p denote the prob-
ability of an update to straggle. The probabilities are independent
for different updates. Assume two stages in which n1 and n2 are the
number of updates. Let t and s denote the update time of a stage with-
out and with a straggling switch, with t << s [10]. With probability
(w.p.) (1 − p)ni none of the updates in stage i straggle. Thus, the
expected time for stage i is Ei = (1 − p)ni · t + (1 − (1 − p)ni ) · s.
For the two stages without merging is T = E1 + E2.

For simplicity, assume there is no change in the number of updates
when merging the stages. Thus, the time of the merged stage is t w.p.
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Figure 2: Part of the network. Flow f1 is added in the target
state, and flows f2, f4, f5 are moved (destination not shown). fx :
t denotes that x-th flow requires t units of bandwidth.

(1 − p)n1+n2 and the expected time is T′ = E′ = (1 − p)n1+n2 ·
t + (1 − (1 − p)n1+n2 ) · s.

To show that the expected time in the merged stage is always
shorter, i.e., T′ < T, we denote:
T = 2t + (1 − (1 − p)n1 ) · (s − t) + (1 − (1 − p)n2 ) · (s − t), or
T = 2s − ((1 − p)n1 + (1 − p)n2 ) · (s − t), or
T = s − (1 − p)n1 · (s − t) + s − (1 − p)n2 · (s − t) (1)

Similarly,
T′ = t + (1 − (1 − p)n1+n2 ) · (s − t), or
T′ = s − (1 − p)n1+n2 · (s − t) (2)

From (1) and (2), T − T′ = s − ((1 − p)n1 + (1 − p)n2 − (1 −
p)n1+n2 ) · (s − t). Note that, (1 − p)n1 + (1 − p)n2 ≤ 1 + (1 −
p)n1+n2 for any probability p.

Thus, T − T′ ≥ s − 1 · (s − t), or T − T′ > 0. Thus, T′ < T.
Discussion: The effectiveness of CATALYST is bound to the re-

dundancy (spare capacity) in the network. Datacenters tend to have
low link utilization [4, 6, 18] making more capacity available for
network updates. However, other networks such as ISP or wide area
networks [8, 9] may not have such sparse traffic. For example, B4
and SWAN drive towards 100% network utilization. However, to
provide high availability even during failures, such networks either
reserve bandwidth or use bandwidth reserved for the lowest priority
traffic as a cushion during failures [8]. CATALYST can re-purpose
such bandwidth to speed up network updates. Our evaluation (§5)
shows that even 10% spare capacity can provide dramatic reduction
in the network update latency.

Lastly, in CATALYST, network operators do not know the exact
paths that will be installed apriori. We believe this as a minor in-
convenience because after all CATALYST does not hide the installed
paths from operators – just that CATALYST reports the paths after
they are installed.

3 Single Alternative Path

In CATALYST, when moving the flows to the alternative paths
to merge the stages in the dependency graph, two major questions
are: (i) which flows to move to the alternative paths; (ii) how to
choose the alternative paths. In this section, we limit the number
of alternate paths (per flow) to 1. Naively, if there are p f paths for
flow f , then there are a total of ∏ f p f alternative paths for all flows.
Scrolling through each combination would be impractical at scale.
Using an ILP (not shown due to space limit) to reduce the length of
the dependency graph is not scalable — it takes roughly 70 seconds
to find alternate paths even at a small scale for hundreds of flows
with thousands of nodes. Below, we detail the heuristics to reduce
the stages of the dependency graph at scale.
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arrow. Sx : Sy : z means “z” units are freed on link Sx : Sy.

3.1 Merging Stages in Dependency Graph
We observe that there exists a dependency between moving two

flows because one flow is waiting for the resources that will be
freed when another flow moves away. As shown in Fig. 3, flow f1 is
waiting on the link capacity resources that will be freed when flows
f2, f4 and f5 move away. Thus, we deduce the following two ways
in merging a stage with a previous stage.
(1) No resource dependency: Move flows ( f1) from the stage to

other paths to avoid dependency on the resources released by pre-
vious stage (e.g., f2, f4, f5), and eliminating that stage. By doing
this, all flows from both the stages can be moved concurrently.

(2) Resources available faster: Move other flows (e.g., f3, f6 in-
stead of f4, f5) to other paths to create resources for f1 faster.

In CATALYST, we first compute the dependency graph given the
current and target network state. The dependency graph generation
is similar to Dionysus [10], which we omit due to space constraints.
We then traverse the stages in the dependency graph in the reverse
direction, i.e., start from the last stage and move up to the first stage
while merging a given stage with its predecessor. This is because,
moving flows from the successor node (the stage that depends on re-
sources) to the alternate paths would potentially eliminate that stage,
and may also eliminate predecessor stages from the dependency
graph (its compliment is not true).

Once a stage is selected, all the flows in that stage must be as-
signed to alternative paths to merge that stage. We consider all the
flows (in a stage) one-by-one for reassigning the paths. Finding the
alternative paths at scale is challenging. For example, when one flow
is assigned to a path (e.g., flow f1), it may have to displace some
other flows (e.g., flow f4). These flows in-turn have to displace some
other flows (e.g., flow f7 – not shown in Fig. 2(b)). Such displace-
ments in chains create more dependencies and complicate finding
paths for even a single flow, and is not tractable at scale.

Thus, in CATALYST, we assign a path (path-p) to a flow only if
the path already has the resources without moving any other flows,
i.e., (i) all the links in path-p have enough capacity to handle traffic
of that flow, (ii) all the switches have enough memory to store the
rules. Further to quickly find the paths to the flows, we: (i) consider
the paths (consisting of multiple links) in the decreasing order of
the bottleneck capacity, (ii) In parallel, we also find the paths with
high overlap with the initial path to reduce the number of updates.
When shortlisting candidate alternate paths, we select paths that are
equally optimal to the path in the initial target state. In this paper, we
consider the distance between the end-points as the optimality value.
Also, if a small degree of sub-optimality in the target state is allowed,
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Figure 4: There are two paths from Ingress to Egress switches
(S1-S2-S5, S1-S3-S4-S5). In reactive, paths are selected one by
one, whereas in speculative, both paths are selected simultane-
ously. The corresponding update times are also shown.

it only amplifies the chances of finding the suitable alternative paths
for the individual flows.

In addition to the optimality check as above, we choose a path
such that: (i) the movement of the flow can be merged with the
previous stage, which is easily done by selecting the paths that do
not require the resource that caused the dependency. For example,
in Fig. 3, when merging stage (n+1), we find the alternate paths
for flow f1 that do not require resources on links S1-S2, S2-S3 and
S3-S4; (ii) importantly, the number of updates in an alternate path
does not exceed the updates in the original path, which ensures that
we don’t increase the probability of encountering a straggler when
installing a path. We break the ties at random.

The second way to merge stages is to make resources available
faster. To do so, we again only find paths that already have the
resources to reduce the complexity. We leave further optimizations
including moving other flows when assigning one flow for the future
work. Also, this algorithm to choose paths can be easily parallelized
as optimality of each path can be considered in parallel.

4 Multiple Alternative Paths
In this section, we explain the advantages of multiple paths for a

flow. We describe how to select multiple candidate paths and then
during update time how to select one of them as an actual path.

4.1 Managing Selected Paths
As shown in Dionysus [10] and B4 [9], switches occasionally

straggle, and if a switch straggler is on an alternative path, then
moving a flow to an alternative path would actually be slower. To
handle such situations, we argue that multiple paths be computed
offline, and one of them be chosen online dynamically based on the
occurrence of straggling switches. To take advantage of multiple
paths, we need to decide (i) how many alternative paths to choose
for each flow, (ii) how to calculate alternative paths, and (iii) how
to choose one of those paths at the runtime.

How to choose one from multiple alternative paths: There ex-
ists a trade-off between how many paths to compute and how to
choose the paths. Imagine we have n paths for a flow, and the goal is
to choose one from these paths. As switches straggle, there are two
ways to choose the path. (i) Reactive: the updater selects one of the
n paths, and starts installing that path. If it hits a switch straggler,
it selects a new path and starts installing it, while simultaneously
rolling back the previous partial update on the old path (Figure 4).
The drawback of the reactive approach is that the updater has to
wait until it detects a switch straggler, and then starts to update the
network to a new alternative path. Both these actions can inflate the
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update latency. (ii) Speculative: the network updater selects two or
more paths and simultaneously start making the update. The path that
is installed first will be assigned to the flow. At the same time, the
updater will roll back the update for other paths that are in progress.
The speculative approach masks the impact of straggler switches as
there are multiple alternative paths whose updates are in progress.

However, unlike the reactive approach, the speculative approach
needs to pre-reserve the resources on all the candidate paths so
that it can add the paths simultaneously, and thus suffers from high
resource reservation overhead — if there are three alternate paths
for a flow, then to simultaneously make the update for these three
paths, it would potentially (worst-case) triple the memory and link
consumption on corresponding switches and links.

In CATALYST, even though the speculative approach has higher
requirements in terms of memory and link usage, we select this
approach as it masks the slowdown caused by straggler switches. We
select up to k paths (to conserve the resources), and start the update
simultaneously. Once one of the k paths is successfully installed, we
set that path at the ingress. Because we pre-reserve the resources,
importantly, rolling back the remaining paths is simple as it only re-
quires removing the rules, which can be done in background without
adding any new dependencies and elongating update latency.

4.2 Computing Multiple Paths Offline
As we compute up to k paths (per flow) offline, the next question

is how to compute these paths. There are two options. (i) Choose
paths with high overlap, i.e., multiple paths share common links to
reduce the resource (switch, link) overhead. The common resources
are to be reserved just once even when shared by multiple paths. (ii)
Choose paths with low overlap to avoid straggler switches affect
large fraction of the paths but has higher resource overhead.

In CATALYST, we choose the later option that uses the paths with
only a small set of common switches as it has a smaller impact of
straggler switches. In fact, we observe that this problem of selecting
the paths with the least overlap is a variant of the max-cover prob-
lem [2], which aims to find the minimum set of paths (given a set of
paths) whose union covers maximum nodes in the graph.

Computing k paths: In CATALYST, we compute the multiple
alternative paths to the same flow inspired by the max-cover problem
(NP-hard). Intuitively, we want to be resistant to a single straggler
switch by having at least one path that does not include that switch.
We refer to a node as a covered node if there exists an alternate path
that contains that node. The details are the following. (i) The input
to the algorithm includes the set of all paths for a given flow (§3).
The output contains a subset of these paths. The number of paths is
limited to k. (ii) We initially reset the set of covered nodes (Set S =
∅). At each stage, we find a path (set of nodes Pi) that maximizes
the set of covered nodes (select Pi that maximize |Pi ∪ S|) and then
adjust the set of protected nodes (S = S ∪ Pi). (iii) We continue
until all k paths are selected or all nodes are exhausted, or no more
paths are left due to limited resources.

Choosing l out of k paths: Note that when the above formulation
computes up to k paths for the individual flows, it assumes that all
the available paths in the network are available to the given flow and
there are no further flows when computing paths. In reality, the net-
work has many flows. Scrolling flows one-by-one and computing the
paths is unfair as the flows selected in the beginning will have more

Table 1: Notations used in the algorithm.
Notation Explanation

Input
F, P Sets of flows and paths
Cr Capacity of r-th resource

Ur
f ,p Resource utilization on r-th resource

when f-th flow is assigned to p-th path

Output Variable (binary)
x f ,p set if f-th flow is assigned to p-th path

y Min. number of paths for a flow

ILP Variable: y, x f ,p
Objective: Maximize y
Constraints:
Resource capacity: ∀r ∈ R, ∑

p∈P, f∈F
x f ,p · Ur

f ,p ≤ Cr (1)

Expressing y: ∀ f ∈ F, y ≤ ∑
p∈P

x f ,p (2)

Figure 5: ILP formulation.

resources available and thus more paths will be selected compared
to the flows in the end. To avoid these problems, we further prune
the number of paths for individual flows. The input to the algorithm
includes all the computed paths for all individual flows by the max-
cover algorithm (k). The output contains only a sub-set of the paths
(l) with an objective to maximize the minimum paths assigned per
flow. This is a variant of a multi-dimensional bin-packing algorithm
with each dimension as a network resource (switch memory, link ca-
pacity), and the individual paths of the flows as the objects. We solve
it using an ILP formulation shown in Fig. 5 using notations shown
in Table 1. Constraint (1) denotes that the resource capacities are not
violated when assigning the paths to the flows, while constraint-2
denotes that y is minimum number of paths across all flows.

Discussion: The value of k depends on the redundancy in the
network. A topology with high redundancy may contain larger pool
of alternate paths, and larger values of k can be set. Larger value of
k indicates more paths available to select alternative paths in the ILP.
However, higher value of k also increases the time to find the paths
using max-cover algorithm, and to solve ILP.

5 Evaluation
We implemented CATALYST using Python and C++, and used

Cplex [1] to solve the ILP. We evaluate CATALYST using a load bal-
ancer scenario for datacenters (DCs) similar to [12]. The datacenter
network has a FatTree topology which contains 1000 ToRs in 50
containers, and each link has a capacity of 10Gbps. We set the num-
ber of flows to 10K and available server replicas in load balancer to
100. The load balancer pre-computes the assignment between flows
and replica servers, and adds the OpenFlow rules to all the source
ToRs where the flows initiate to change the destination IP to the
replica server assigned to that flow, and forwards the packets to the
selected replica. The experiments show the results of changing one
load balancer policy with another. The initial load balancer policy
assigns a server replica to every flow uniformly at random. In the
second load balancer policy, we fail 2 ToRs, and repeat the procedure
for a different random assignment – again distributed among ToRs
uniformly at random. Further, we set the limit on number of flows
handled by the individual replica to

⌈
10K
98

⌉
= 103. Further, we set
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Figure 6: Improvements in CATALYST.
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Figure 8: Impact of max. paths on the speedup.
aside additional memory (s) at the switches used during the network
updates. We run experiments with additional memory set to 10%
and 20% (s=0.1, 0.2). We do not consider s=0 as without additional
memory, the network update may run into deadlocks [8].

We evaluate the impact of various design policies in CATALYST

on the network update speed. We repeat each experiment for 100
times. We set the max. number of paths in the max-cover problem
(k) to 10, and set the number of alternate paths chosen to 1 or 2 (l =
1,2). The computation time to find alternate paths takes 0.1-0.3 sec
(median 224 msec). We calculate speed up for each of the 100 runs.
Fig. 6 shows the speedup in median case while the error-bars denote
the minimum and maximum speedup.

DAG stages (no straggler): First, we show the speedup in the
DAG stages, i.e., reduction of the DAG stages by assigning the flows
to the alternate paths. The speedup is simply the ratio of the number
of stages before and after merging the stages. Note that, the speedup
in the DAG stages shows the speedup in network update when there
are no stragglers as the update speed without stragglers only depends
on the number of stages. CATALYST achieves impressive speedup
of 1.7× (median) and 2.5× (peak) for s = 0.1, and similar speedup
for s = 0.2 showing that CATALYST is highly effective in finding
alternate paths to reduce the stages in the DAG.

Update latency (single alternate path): From the network up-
dater prospective, the most important metric is the reduction in the
total update time, which is shown in Fig. 6. First, we set the max.
alternate paths (per flow) to 1, i.e., at most 1 alternate path will be

found for a given flow. As the update time of a stage depends on
the max. update time of a flow in that stage, the total update time
for S stages is ∑

s∈S
max(t f ,s), where t f ,s is update time for f -th flow

in s-th stage. We model t f ,s (including t f ,s due to stragglers) using
the distribution from [10]. The flows experiencing stragglers are
selected at random. The speedup in the update latency is 1.05-1.88×
(median = 1.22× and 1.32× for s = 0.1 and 0.2, respectively), which
is surprisingly smaller compared to the improvements in the DAG
stages. Figure 7 sheds more light on the loss in the speedup. Recall
that the total update time is also dominated by the stages that observe
stragglers. Figure 7 shows that although CATALYST reduces number
of stages by 71% (for s=0.1), the fraction of stages that observed
a straggler (denoted using f1, and shown in black in Fig. 7) was
reduced by only 12.5%. The key reason for the smaller f1 is because
there are just many flows in those stages and not all the flows could
be assigned to the alternate paths. As we increase the extra capacity
in the network to 20% (s=0.2), f1 is also increased to 23% and this
improved the overall speedup by 33% (median).

Update latency (multiple alternate paths): Next, we measure
the impact of using multiple alternate paths for individual flows.
Unlike previous experiment, in this experiment, as there can be
multiple paths for individual flows, the t f ,s = min(t f ,s,p), where
t f ,s,p is the update latency for f -th flow in s-th stage for its p-
path, which we again model using the distribution shown in [10]. In
Figure 6, we show the results for maximum alternate path set to 2. As
shown, CATALYST substantially improves the network update speed
by 1.14-2.15× (median = 1.43× for s=0.1, 1.65× for s=0.2). If each
flow in a stage has a > 1 paths, and if the probability of a straggler
is q, then the probability that all the paths for that flow encounter a
straggler is qa, which is significantly smaller than the case of having
a = 1. This reduction in the probability is directly reflected in the
increase in the speedup achieved – compared to previous experiment
(maxflow=1), we found higher values for f1 = 31% and 43% for
s=0.1 and s=0.2 respectively.

In the last experiment, we measure the sensitivity of the improve-
ments in CATALYST by varying the maximum alternate path (M)
between 2 to 10. As shown in Fig. 8, as M increases, the improve-
ment in CATALYST gradually reduces, and almost reaches to 1×
at M = 10. The key reason for the reduction is that after a certain
value of M, the extra paths in the merged stages have no impact as
there are already enough paths to substantially reduce the chances
of a straggler, but that reduces the number of such extra paths for
the flows in the un-merged stages, which increases the chances of a
straggler, and thus increase in the update latency.

6 Conclusion
We argue that the network update speed can be substantially

improved using a power of choice between multiple equally good
paths. We present CATALYST, which uses the power of choice to
shrink the dependency graph of the network updates and speedup the
network updates. Further, we argue that because network switches
occasionally straggle, multiple alternative paths be computed offline,
and one of those paths be chosen online to reduce the impact of
the straggling switches. In CATALYST, we find the alternate paths
using a combination of max-cover and bin-packing algorithms. Our
evaluation in load balancer settings shows that CATALYST improves
the update time by 1.14-2.15×.
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parent SDN update scheduling. In HotSDN 2014.

[17] Mark Reitblatt, Nate Foster, Jennifer Rexford, and David Walker. Consistent
Updates for Software-defined Networks: Change You Can Believe in!. In ACM
HotNets 2011.

[18] Arjun Roy, Hongyi Zeng, Jasmeet Bagga, George Porter, and Alex C Snoeren.
Inside the social network’s (datacenter) network. In SIGCOMM 2015.

[19] Ashish Vulimiri, Brighten Godfrey, Radhika Mittal, Justine Sherry, Sylvia Rat-
nasamy, and Scott Shenker. Low latency via redundancy. In ACM CoNEXT 2013.

[20] Ashish Vulimiri, Oliver Michel, Brighten Godfrey, and Scott Shenker. More is
less: reducing latency via redundancy. In ACM HotNets 2012.

[21] Wenxuan Zhou, Dong Jin, Jason Croft, Matthew Caesar, and Brighten Godfrey.
Enforcing Customizable Consistency Properties in Software-defined Networks. In
USENIX NSDI 2015.

282

http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
https://en.wikipedia.org/wiki/Maximum_coverage_problem

	Abstract
	1 Introduction
	2 Catalyst Overview
	2.1 Background on Network Updates
	2.2 The Case for Alternative Paths
	2.3 Is Merging Stages Always Helpful?

	3 Single Alternative Path
	3.1 Merging Stages in Dependency Graph

	4 Multiple Alternative Paths
	4.1 Managing Selected Paths
	4.2 Computing Multiple Paths Offline

	5 Evaluation
	6 Conclusion
	References

