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ABSTRACT
This paper proposes ElasticFlow, an elastic serverless training plat-

form for distributed deep learning. ElasticFlow provides a serverless

interface with two distinct features: (𝑖) users specify only the deep

neural network (DNN)model and hyperparameters for a job, but not

the number of GPUs; (𝑖𝑖) users specify the deadline for a job, but not
the amount of time to occupy GPUs. In contrast to existing server-

centric platforms, ElasticFlow provides performance guarantees in
terms of meeting deadlines while alleviating tedious, low-level, and

manual resource management for deep learning developers.

The characteristics of distributed training introduce two chal-

lenges. First, the training throughput scales non-linearly with the

number of GPUs. Second, the scaling efficiency is affected byworker

placement. To address these challenges, we propose Minimum Sat-
isfactory Share to capture the resource usage of training jobs to

meet deadlines, and ElasticFlow performs admission control based

on it. We develop a greedy algorithm that dynamically allocates

resources to admitted jobs based on diminishing returns. We apply

buddy allocation to worker placement to eliminate the effect of

topology. Evaluation results on a cluster of 128 GPUs show that

ElasticFlow increases the number of jobs that can meet their dead-

lines by 1.46–7.65× compared to existing solutions.

CCS CONCEPTS
•Computingmethodologies→Distributed computingmethod-
ologies; • Computer systems organization→ Cloud comput-
ing.
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1 INTRODUCTION
Deep learning (DL) powers many applications and services we

use every day. Training DL models is an important workload in

datacenters. Most of the current efforts for DL training follow the

server-centric style [12, 19, 21, 63], where DL developers request

hardware resources in the form of machine instances (physical

machines, virtual machines, or containers) to run DL training jobs.

Although the server-centric approach substantially advances DL

applications, it has two limitations.

First, the server-centric model is too low level for DL developers,

who need to explicitly request hardware resources and configure

machines to run their jobs. Also, DL developers face a system-wide
problem of adapting the local batch size based on GPU memory

and deciding the number of workers, as well as a DL problem of

choosing the hyperparameters when training deep neural network

(DNN) models. This is particularly challenging for DL developers

who are likely to have limited expertise in systems. Second, the

server-centric model does not have the flexibility to elastically scale

the resource provisioning of DL jobs to promise performance guar-
antees, i.e., guaranteeing to finish a job before a given deadline.

Performance guarantees are critical for production environments

that require models to be (re-)trained and onboarded in time for

regular product releases [19, 38], e.g., fine-tuning the BERT model

with daily news to update recommendation services every day.
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While some DL training platforms [42, 52] are not server-centric

(i.e., DL developers do not need to configure the system-wide con-

figurations), they are not aware of DL developers’ performance

requirements.

Our proposal. A good platform for DL training should alleviate

low-level resource management for DL developers while providing

guarantees for their requirements. Therefore, we propose Elas-

ticFlow, an elastic serverless training platform for distributed DL.

Compared to existing DL platforms [12, 19, 21, 42, 49, 52, 63], the

key difference of ElasticFlow is that it exposes a high-level deadline-
driven serverless interface to DL developers with two distinct fea-

tures: (𝑖) DL developers specify only the to-train DNN model and

hyperparameters for a job, without the need to explicitly declare the

required number of GPUs; (𝑖𝑖) DL developers specify the desired

deadline for a job, but not the exact amount of time to occupy GPUs.

This deadline-driven serverless interface decouples the DL problem

from the system management problem. The benefit of this design is

that it alleviates low-level tedious resource management tasks for

DL developers and allows them to focus on model development in a

low-code fashion. Importantly, by decoupling static resource config-

uration from the DL training code, ElasticFlow is able to leverage

elastic scaling to dynamically allocate resources for every single

job and provide performance guarantees to meet their deadlines.

Challenges. Although serverless interfaces can provide possible

design space, the characteristics of DL jobs introduce two challenges

to elastic resource allocation while guaranteeing given deadlines.

First, the throughput of a DL job scales non-linearly along with the

number of GPUs. The reason is that the communication overhead

among workers increases with the number of workers. Second, the

scaling efficiency is affected by the placement of workers [63]. The
workers within the same server can leverage the high-bandwidth

NVLink or PCIe to communicate among GPUs, while the band-

widths across servers are usually at a lower level. Thus, the place-

ment of workers changes the scaling curve of a job. As ElasticFlow

needs to consider a set of non-linear scaling curves for each job,

these two challenges intertwine with each other, which further

complicates resource allocation.

Key techniques. Tomaximize resource efficiency under non-linear

scaling curves, we proposeMinimum Satisfactory Share. It is known
that the scaling curves of DL jobs are concave, which means adding

resources to a distributed job may have diminishing returns. We

use the minimum satisfactory share to capture the minimum re-

source allocation a job needs to meet its deadline. The key tech-

niques of ElasticFlow include an admission control module that

decides whether to admit an arriving job and a resource allocation

module that dynamically allocates resources to guarantee the jobs’

deadlines. For each admitted job, the resource allocation module

allocates at least the minimum satisfactory share for each job to

guarantee their deadlines. For the remaining resources, the module

uses a greedy algorithm to prioritize resource allocation for the

most efficient jobs based on the diminishing returns of their scal-

ing curves. We prove that the algorithm is optimal under concave

scaling curves. We also describe the extensions of ElasticFlow to

accommodate best-effort jobs (i.e., jobs without deadlines).

We apply buddy allocation to address the challenge of topology-

dependent placements, which enables ElasticFlow to decouple job
placement from admission control and resource allocation. Where

jobs can be migrated and the number of workers is restricted to a

power of two, buddy allocation guarantees to eliminate fragmen-

tation, i.e., a job can always find a set of GPUs that are “close” to

each other in topology as long as the number of idle GPUs is no

smaller than that needed by the job.

Contributions. Our contributions are as follows.
• We propose ElasticFlow, an elastic serverless computing

platform for distributed DL training. ElasticFlow provides a

serverless deadline-driven interface to alleviate DL develop-

ers’ resource management efforts, and exploits elastic scaling

to guarantee deadlines for DL training jobs.

• We propose the metric of minimum satisfactory share to

capture the minimum number of GPUs a job needs to meet

its deadline under non-linear scaling curves.

• We design an admission control algorithm that decides whe-

ther a job can be admitted guaranteeing its deadline, and an

elastic resource allocation algorithm that allocates GPUs to

admitted jobs to maximize resource utilization.

• We implement a system prototype of ElasticFlow and in-

tegrate it with PyTorch. Evaluation results on a 128-GPU

cluster show that ElasticFlow can substantially increase the

number of jobs that can meet their deadlines by 1.46–7.65×
compared to existing state-of-the-art solutions.

Open-source.The code of ElasticFlow is open-source and is pub-

licly available at https://github.com/pkusys/ElasticFlow.

2 BACKGROUND AND MOTIVATION
2.1 Background
Serverless computing. Serverless computing, or Function-as-a-

Service (FaaS), is an emerging paradigm to run workloads in the

cloud [34]. Traditional Infrastructure-as-a-Service (IaaS) uses a

server-centric model: cloud providers expose hardware resources

as bare-metal servers, virtual machines, or containers, where users

have to figure out how many hardware resources are needed to

run a certain workload. Comparatively, in serverless computing,

resource management is entirely offloaded to cloud providers. Users

need to code only their workloads using functions and submit func-

tions to the serverless platform. In addition, low-code development

is promising for DL jobs in serverless computing [61]. As of now,

serverless computing platforms do not have mature support for

accelerators such as GPUs. A natural next step is to enable acceler-

ator support on serverless computing platforms to power a wider

family of workloads.

Distributed and elastic training. A DL training job trains a DNN

model with a dataset. The job includes many iterations, and each

uses a batch of samples from the dataset to train the model with a

forward pass and a backward pass. It is time-consuming to train

DNN models, so distributed training is widely used to speed up

the training process. In the data parallelism [35–37, 48] strategy

of distributed training, each worker maintains a copy of the DNN

model locally. For each iteration, each worker first trains the model
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independently, exchanges its gradients with other workers to ag-

gregate them, and then updates its local copy of the model and

begins the next iteration. The batch size of each worker is called

the local batch size, and the sum of the batch size of all workers is

called the global batch size. There are also other strategies, such

as model parallelism [15], hybrid parallelism [32], and pipeline

parallelism [9, 26].

Many solutions have been proposed to optimize single-device

training [31, 56, 57, 69], the communication between workers in

distributed training [13, 18, 24, 28, 33, 59, 65, 66], and distributed

training algorithms [39, 40]. Several efforts have explored elastic

training [7, 23, 27, 43, 45, 46, 50, 51, 62, 64]. Based on these advance-

ments, it has become viable to apply elastic scaling in distributed

training platforms. Note that enabling elasticity to speed up a single

training job is not the focus of ElasticFlow. Instead, ElasticFlow fo-

cuses on scheduling multiple jobs in the cloud and exploits elasticity

to provide performance guarantees in a serverless manner.

2.2 Limitations of Existing Solutions
Early efforts used cluster managers like Kubernetes or YARN to

schedule DL jobs in the cloud without considering the character-

istics of DL jobs, which results in low performance [11, 29, 30].

Recent efforts proposed specialized cluster schedulers for DL train-

ing jobs [12, 19, 21, 42, 49, 52, 63, 68]. These efforts either followed

the server-centric model or disregarded DL developers’ performance

requirements, which have the following two limitations.

First, the server-centric model is too low level for DL developers:

it tightly couples a DL problem with a system problem. DL devel-

opers need to explicitly request hardware resources and configure

machines to run their jobs. While containers simplify system con-

figurations and make programs more portable, DL developers are

still responsible for wrapping their programs in containers with

low-level system configurations. More importantly, DL training

jobs are constrained by GPU hardware resources. DL developers

face a system problem of adapting the local batch size based on

GPU memory and deciding the number of workers, which affects

both the global batch size and the training throughput. Moreover,

DL developers face a DL problem of choosing the hyperparameters

when training DNN models (e.g., global batch size, learning rate,

etc.). The low-level server-centric interface conflates the DL prob-

lem with the system problem. This is particularly challenging for

DL developers who do not normally have expertise in systems [14].

Although systems such as Amazon SageMaker [3] provide a man-

aged service for DL training, DL developers are still faced with

both the DL problem and the system problem of hardware resource

configurations.

Second, the existing solutions do not have the flexibility to elas-

tically scale the resources of DL jobs to provide performance guar-
antees (i.e., guarantee to finish a job before a particular deadline).

Most existing solutions focus on optimizing job completion time

(JCT) [21, 42, 63]. While this is meaningful for many scenarios,

there is another important class of scenarios where DL developers

require performance guarantees when they have an explicit expecta-

tion of their jobs’ deadline [19, 38]. For example, some production

environments require models to be (re-)trained and onboarded in

time for regular product releases. While some recent work [19]

made attempts to consider deadlines, it still adopts a server-centric

approach that lacks the flexibility to elastically scale the resources

of a job up or down to optimize cluster-wide resource utilization

and meet deadlines.

3 ELASTICFLOW OVERVIEW
3.1 Architecture
ElasticFlow exposes a high-level serverless interface to DL de-

velopers, based on which they submit jobs to ElasticFlow. Then,

ElasticFlow exploits resource elasticity to dynamically allocate re-

sources to jobs based on their deadlines and the cluster status.

ElasticFlow interface. DL developers submit their training jobs

as serverless functions to ElasticFlow. A function of a training job

includes the following parameters.

• DNN model, which is the DNN model to be trained.

• Hyperparameters, which are the training hyperparameters

such as global batch size, learning rate, etc.

• Termination condition, which is the condition indicating the

completion of the job. DL developers only need to specify

a maximum number of iterations. They can also add other

conditions such as reaching a certain accuracy.

• Deadline, which is a point in time by which the DL developer

expects the training job to finish.

• Other training components (dataset, optimizer, etc.).

This serverless interface differs from today’s server-centric in-

terface in two aspects. First, DL developers submit only a function

that encodes a job to the platform, and the platform takes care of

resource management. DL developers encode a training job in a

function as single-device training and need to specify only the global
batch size and other hyperparameters. This allows DL developers

to focus on solving the DL problem, i.e., tuning the global batch
size and the learning rate to achieve high model accuracy. The

system-level resource management problem of deciding the local
batch size and the number of workers based on the GPU memory

is handled by ElasticFlow. Second, DL developers specify only the

deadline for each job. This low-code style development simplifies

the interaction between DL developers and the platform, as DL

developers no longer need to control when to terminate allocated

machine instances. It also provides flexibility for the system to dy-

namically adjust the resources allocated to each job based on their

deadlines and termination condition.

Note that, in practice, DL developers can use a variety of condi-

tions to decide the termination of a training job, e.g., the training

accuracy is above a threshold, etc. Because of the stochastic and un-

predictable nature of DL jobs (e.g., the accuracy may never exceed

the threshold due to bad initialization parameters), it is common to

assign a maximum number of iterations to bound the running time

of a job. We use the maximum number of iterations as the main

termination condition in the interface. ElasticFlow also supports

scheduling jobs without deadlines (§ 4.4).

ElasticFlow architecture. Figure 1 shows the architecture of Elas-
ticFlow. DL developers submit DL training jobs and, for each in-

coming job, ElasticFlow first uses the admission control module

to decide whether to admit or drop the job. The admission con-

trol module obtains the current cluster status from the monitor
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Figure 1: ElasticFlow architecture.

module and computes the minimum satisfactory share for the job

(§ 4.1). The resource allocation module then schedules the admitted

jobs to efficiently utilize resources and meet their deadlines (§ 4.2).

Upon each scheduling event, such as job arrival or completion,

the resource allocation module may update the resource allocation

of some jobs through elastic scaling, i.e., adjusting the number of

GPUs allocated to a job based on the deadlines of admitted jobs

and the number of available GPUs. The module also computes the

local batch size (i.e., dividing the global batch size by the number

of GPUs) for a given job. The job placement module selects GPUs

from the cluster for each job based on topology (§ 4.3). After the

placement is decided, the module sends the jobs to the elastic train-

ing executor, a plugged-in component that can be replaced by any

elastic DL framework. The elastic training executor ensures that

each machine executes DL jobs correctly.

Performance guarantee. ElasticFlow provides the following per-

formance guarantee: when a DL training job is admitted to the

system, the deadline of the job is guaranteed to be satisfied.

3.2 Challenges

Non-linear scaling.Distributed training improves the job through-

put with more workers. However, the throughput does not increase

linearly with the number of workers due to parameter synchro-

nizations and other overheads. The scaling curves for DL jobs are

typically concave. Figure 2(a) shows the normalized scaling curves

of six DNN models measured on varying numbers of GPUs. Each

machine has eight NVIDIA A100 GPUs and eight NVIDIA Mellanox

HDR InfiniBand HCAs, interconnected by a 200GB/s InfiniBand
network. We observe concave scaling curves from the collected

throughputs. For example, the training throughput of VGG16 using

a global batch size of 256 with eight GPUs is expected to be 8× that

of with 1 GPU under linear scaling, while the actual throughput

with eight GPUs is only 76.07% of that with linear scaling.
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Figure 2: Characteristics of distributed training jobs. (a) Scal-
ing curves of popular DNN models. (b) Throughputs of dif-
ferent placements for 8-GPU jobs.

ElasticFlow’s deadline-aware scheduling should take non-linear

scaling into account. Deadline-aware scheduling is not a new prob-

lem: traditionally, Earliest-Deadline-First (EDF) is known to be

effective for meeting deadlines [20]. The canonical setup of EDF

assumes a single worker per job, and jobs are ordered by their dead-

lines. A straightforward solution to apply EDF to scheduling DL

jobs is to view the entire cluster as a logical worker, the throughput

of which is the sum of the throughput of all the machines. However,

this solution does not work for non-linear scaling jobs. For example,

consider jobs A and B, which both have the same scaling curve, as

shown in Figure 3(a): the throughput is 1 unit with one worker, and

1.5 units with two workers. Let the deadlines of A and B be at time

unit 3 and 3.5, respectively. Let the job sizes of both A and B be 3

units of iterations. EDF first runs A and then runs B; A’s deadline

is satisfied, but B’s deadline is violated (Figure 3(b)). Alternatively,

if we use one worker for each job, the deadlines of both jobs are

satisfied (Figure 3(c)).

Topology-dependent placement. The performance of a distri-

buted training job not only depends on the number of workers

but also on the placement of the workers topologically. This is be-

cause the speed of parameter synchronization between workers is

decided by the communication bandwidth, which changes based

on how the workers are connected. When the workers are on the

same server, the communication can use PCIe (32GB/s bandwidth
for PCIe 4.0×16) or NVLink (600GB/s bidirectional bandwidth for

third-generation NVIDIA NVLink). When the workers are on dif-

ferent servers in the same rack, the bandwidth is determined by

networking, which is typically 40Gbps Ethernet, 200Gbps Infini-

Band, or 8×200Gbps InfiniBand for high-end GPU servers. The

bandwidth is lower when the workers are in different racks.

To illustrate the problem, we measure the throughputs of train-

ing ResNet50 and BERT with different worker placements. The

global batch size is 256. Each machine is configured with eight

NVIDIA A100 GPUs, which are intra-connected by NVLink with

600GB/s bidirectional bandwidth and inter-connected by an Infini-

Band network with 200GB/s bandwidth. As shown in Figure 2(b),

the throughputs are different depending on the placement of the

workers. When the eight workers are on the same server, the

throughput is 2.17× of that when the eight workers are on eight dif-

ferent servers for ResNet50. We only show the scaling throughputs

269



ElasticFlow: An Elastic Serverless Training Platform for Distributed Deep Learning ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

Job A
Job B

# workers
0 1 2

th
ro

ug
hp

ut

Job B2

(a) Scaling curve of job A and B.

(b) Earlist-Deadline-First (EDF).

(c) Optimal schedule.

Job A

time0 1 2 3 4

G
PU

 ID 1

2

time0 1 2 3 4
G

PU
 ID 1

2 A’s deadline
B’s deadline

1

Figure 3: Motivating example to show that EDF does not work
well for jobs with non-linear scaling curves.

for two models and four placements. There are more combinations,

as eight workers can be divided between servers in many different

ways.

The topology-dependent placement further complicates the re-

source allocation problem in ElasticFlow.When allocating resources

to jobs, the scheduler needs to consider a set of scaling curves

instead of a single scaling curve; the curves also depend on job

placement.

4 ELASTICFLOW DESIGN
In this section, we describe the detailed design of ElasticFlow to

address the above challenges. We propose Minimum Satisfactory

Share to capture the minimum resource usage of DL jobs to meet

deadlines for admission control. ElasticFlow applies buddy allo-

cation to eliminate the effect of topology on job placement, thus

reducing the number of scaling curves to be considered for each

job. ElasticFlow dynamically allocates resources to admitted jobs

to maximize resource efficiency, taking non-linear scaling into ac-

count.

4.1 Admission Control
Minimum Satisfactory Share. The scaling curves for DL training

jobs are concave. This implies diminishing returns: the benefit of

adding an extra GPU to a training job decreases with the number

of GPUs. As a result, the per-GPU throughput drops as the number

of GPUs increases and using a single GPU for a training job is the

most efficient. We define resource usage as the number of GPUs

times the running time, i.e.,

resource usage = number of GPUs × running time.
For example, suppose we have a training job with the scaling curve

in Figure 4(a). The throughput is 1 unit, 1.5 units, and 2 units with

one, two, and four GPUs, respectively. If it requires 1 time unit to

train a job with one GPU, then it would require 2/3 of a time unit

with two GPUs and 1/2 a time unit with four GPUs to train the job.

The resource usage is 1, 4/3, and 2 units of GPU time with one, two,

and four GPUs, respectively. Using a single GPU has the lowest

GPU resource usage. However, because jobs have deadlines, we

cannot train every job with a single GPU as it may violate their

deadlines.

We define minimum satisfactory share as the lowest number

of resources needed to train a job in order to meet its deadline.

Job C

# workers

(a) Scaling curve of job C.

(b) Only schedule job C.
time

0
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ut
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G
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Job B

time0

G
PU

 ID

4

2
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1

3

Job C

(c) Schedule job A, B and C.

C’s deadline

Figure 4: Example for ElasticFlow admission control. The
GPU time to finish a job changes depending on other jobs.
Finishing job C with the scaling curve in (a) requires 4 units
of GPU time in (b) and 5 units of GPU time in (c).

Resource usage is minimized when jobs are assigned with their

minimum satisfactory shares to run. For the preceding example, if

the deadline of the job is 1 time unit, then we can simply allocate

one GPU to the job. But if the deadline is 2/3 of a time unit then we

need to allocate two GPUs to the job to meet its deadline. Allocating

two GPUs minimizes resource usage while meeting the deadline of

the job.

Admission control. Jobs are only admitted if ElasticFlow can

guarantee their deadlines. Specifically, ElasticFlow computes the

minimum satisfactory share of each arriving job. If the system has

more resources than the minimum satisfactory share, the job can

be admitted as its deadline can be guaranteed. Otherwise, the job

is dropped to avoid violating the performance guarantee.

When there is no running job in the cluster, computing the

minimum satisfactory share for an incoming job is straightforward:

we only need to allocate the smallest number of GPUs so that the

completion time of the job is no later than its deadline. This can be

done efficiently with a binary search.

When there are already jobs admitted by the system, directly

using binary search to solve the above problem is not sufficient. For

example, suppose we have a job C with the scaling curve shown in

Figure 4(a). Let the deadline of job C be 2 time units. When there is

only job C, it can use two GPUs to finish in 2 time units, as shown

in Figure 4(b). Now suppose there are already two jobs (A and B) in

the system, and suppose those need to use one and two GPUs for 1

time unit, respectively. Because there are only four GPUs in total,

job C cannot use two GPUs for the first time unit. In this scenario,

the minimum satisfactory share for job C is to use one GPU for the

first time unit and four GPUs for the second time unit, in order to

meet its deadline.

We first describe how to solve the simple case of linear scaling

curves to obtain intuitions, and then extend to non-linear curves.

For the linear scaling case, the per-GPU throughput is the same

regardless of the number of allocated GPUs. Formally, let 𝑇 (𝑥𝑖 ) =
𝑘𝑖 · 𝑥𝑖 be the scaling curve of job 𝑖 , i.e., the throughput of job 𝑖

is 𝑇𝑖 (𝑥𝑖 ) when the number of GPUs allocated to it is 𝑥𝑖 and 𝑘𝑖 is

the per-GPU throughput. The latter is measured as the number
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of iterations per time unit. Let 𝑀𝑖 be the maximum number of

iterations to run, which represents the termination condition. Let

𝐷𝑖 be the deadline of job 𝑖 . To meet the deadline, we need to allocate

𝑀𝑖/(𝑘𝑖𝐷𝑖 ) GPUs to job 𝑖 for 𝐷𝑖 amount of time, or equivalently

a total amount of 𝑀𝑖/𝑘𝑖 GPU time. Let 𝐺 be the total number of

GPUs. We have the following theorem.

Theorem 1. For 𝑛 jobs with linear scaling curves, we sort the jobs
by their deadlines in increasing order. If the condition

∀ 𝑖 ≤ 𝑛 − 1,
𝑖∑︁
𝑗=0

𝑀𝑗/𝑘 𝑗 ≤ 𝐺 · 𝐷𝑖 . (1)

holds, then there exists an allocation that can guarantee the dead-
lines for all jobs. Otherwise, no allocation can guarantee the deadlines
for all jobs.

The intuition of the theorem is that because the scaling curves

are linear, it does not matter how many GPUs are used for a job

in each time slot. We only need to: (𝑖) sort jobs by deadlines, and

(𝑖𝑖) account for the total GPU time consumed by a job and check if

it exceeds the amount needed by the job before its deadline. Con-

dition (1) ensures that the required GPU time of the jobs does not

exceed the available GPU time. By ordering the jobs by their dead-

lines in increasing order, we can prove the theorem by induction.

The problem becomes challenging for DL jobs due to their non-

linear scaling curves. In this case, we cannot simply use 𝑀𝑖/𝑘𝑖 to
compute the amount of GPU time needed by job 𝑖 . Let 𝑥𝑖 (𝑡) be the
number of GPUs allocated to job 𝑖 at time slot 𝑡 . Then the admission

control is to check whether we can find an allocation 𝐴 = {𝑥𝑖 (𝑡)}
that satisfies the following two conditions:

∀ 𝑖,
𝐷𝑖∑︁
𝑡=0

𝑇𝑖 (𝑥𝑖 (𝑡)) ≥ 𝑀𝑖 ; (2)

∀ 𝑡,
𝑛−1∑︁
𝑖=0

𝑥𝑖 (𝑡) ≤ 𝐺. (3)

The first condition represents that the total number of iterations

performed by a job is no smaller than the maximum number of

iterations of the job, i.e., the deadline is met. The second condition

represents that the total number of GPUs allocated to the jobs in

any time slot is no bigger than the number of available GPUs.

We apply the intuition of solving the problem under linear scal-

ing curves and adapt progressive filling [10] to compute the mini-

mum satisfactory share under non-linear scaling curves. The key

idea is to: (𝑖) sort the jobs by deadlines, and (𝑖𝑖) increase the num-

ber of GPUs for each job progressively until the deadline of the

job can be met. Algorithm 1 shows the pseudocode of admission

control. The algorithm first sorts the jobs by deadlines in increasing

order (line 3). For each job, it checks whether the deadline of all

admitted jobs can still be satisfied after adding the new job (lines

4-7). It increases the number of GPUs 𝑗 for job 𝑖 from one (line 13).

But 𝑗 should not be larger than the number of remaining GPUs in

the cluster (line 15). The algorithm sums up the number of itera-

tions job 𝑖 can perform at time slot 𝑡 . If the sum is no smaller than

the maximum number of iterations, the job can finish before its

deadline (lines 17-19). If job 𝑖 cannot be satisfied after enumerating

the number of GPUs, it means adding the new job would violate

Algorithm 1 Admission Control

1: function AdmissionControl( 𝑗𝑜𝑏)

2: Add 𝑗𝑜𝑏 to 𝑗𝑜𝑏𝑠

3: Sort 𝑗𝑜𝑏𝑠 by deadline in increasing order

4: for 𝑖 in 𝑗𝑜𝑏𝑠 do
5: if ProgressiveFilling(𝑖 , 0) is 𝐹𝑎𝑙𝑠𝑒 then
6: // Drop job
7: return False

8: // Admit job
9: return True

10:

11: function ProgressiveFilling(𝑖 , 𝑠𝑡𝑎𝑟𝑡𝑇𝑖𝑚𝑒)

12: 𝑖𝑠𝑆𝑎𝑡𝑖𝑠 𝑓 𝑖𝑒𝑑 ← 𝐹𝑎𝑙𝑠𝑒

13: for 𝑗 from 1 to 𝐺 do
14: for 𝑡 from 𝐷𝑖 to 𝑠𝑡𝑎𝑟𝑡𝑇𝑖𝑚𝑒 do
15: 𝑥𝑖 (𝑡) ←𝑚𝑖𝑛( 𝑗,𝐺 −∑𝑘=𝑖−1

𝑘=0
𝑥𝑘 (𝑡))

16: // Check if the job can be satisfied
17: if

∑𝐷𝑖

𝑡=0
𝑇𝑖 (𝑥𝑖 (𝑡)) ≥ 𝑀𝑖 then

18: 𝑖𝑠𝑆𝑎𝑡𝑖𝑠 𝑓 𝑖𝑒𝑑 ← 𝑇𝑟𝑢𝑒

19: Break
20: if 𝑖𝑠𝑆𝑎𝑡𝑖𝑠 𝑓 𝑖𝑒𝑑 is 𝑇𝑟𝑢𝑒 then
21: Break
22: return 𝑖𝑠𝑆𝑎𝑡𝑖𝑠 𝑓 𝑖𝑒𝑑

the deadline of at least one job. Therefore, the new job is dropped

(lines 5-7). Otherwise, it is safe to admit the new job (lines 8-9).

We use the example in Figure 4 to illustrate how the algorithm

works. Let 𝐷𝑐 = 2 and 𝑀𝑐 = 3. Suppose there are already two

jobs A and B in the system and they need to use 3 GPUs for the

first time slot. If 𝑗 is 2, then job C can use only 1 GPU for the

first time slot and 2 GPUs for the second time slot. In this case,∑
2

𝑡=0𝑇𝑐 (𝑥𝑐 (𝑡)) = 𝑇𝑐 (1) + 𝑇𝑐 (2) = 2.5 < 𝑀𝑐 , which means job C

does not finish in 2 time slots. If 𝑗 is 4, then job C gets 1 GPU for

the first time slot and 4 GPUs for the second time slot, and we

have

∑
2

𝑡=0𝑇𝑐 (𝑥𝑐 (𝑡)) = 𝑇𝑐 (1) + 𝑇𝑐 (4) = 3 ≥ 𝑀𝑐 , which means the

deadline of job C can be met.

4.2 Resource Allocation
Allocating the minimum satisfactory share to each job can already

provide a performance guarantee, but after each job is allocated

with its minimum satisfactory share, the cluster may still have idle

GPUs left. It is beneficial to allocate the remaining GPUs to the

admitted jobs, because if allocating more GPUs further speeds up

the jobs, ElasticFlow would free up more GPUs even before the

deadlines of the admitted jobs. This would allow the system to

accommodate more jobs in the future. Our goal is to find an efficient
resource allocation that fully utilizes the GPUs while guaranteeing

the deadlines of all admitted jobs.

A straw-man solution is to allocate all the remaining GPUs to

the job with the earliest deadline. But this does not make the best

use of GPU resources, because the marginal return of adding one

extra GPU diminishes with more GPUs under non-linear scaling

curves. Another straw-man solution is to allocate the remaining

GPUs evenly to the admitted jobs. This solution avoids adding all

resources to one job, but it does not consider the current number of
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GPUs a job has, which affects the benefit of adding one extra GPU

to a job.

From the straw-man solutions, we can see that the key to achiev-

ing our goal is to account for the diminishing returns of each job

given its allocated GPUs. To derive the optimal solution, we for-

mally formulate the problem as follows. We consider the next time

slot for resource allocation. Note that it is unnecessary to consider

further time slots, because even if we do, new jobs may arrive and

be admitted, and we would have to recompute the resource allo-

cation plan. We use 𝑎𝑖 (𝑡) to denote the GPU allocation that has

already been assigned to job 𝑖 over time. When resource allocation

starts, it is equal to the number of GPUs allocated to job 𝑖 calculated

by admission control (Algorithm 1). Let 𝑥𝑖 (𝑡) be the actual number

of GPUs to allocate to job 𝑖 over time. Then resource allocation is

to solve the following optimization problem:

min

𝑛−1∑︁
𝑖=0

𝐷𝑖∑︁
𝑡=0

𝑥𝑖 (𝑡) (4)

𝑠 .𝑡 . ∀ 𝑖,
𝐷𝑖∑︁
𝑡=0

𝑇𝑖 (𝑥𝑖 (𝑡)) ≥ 𝑀𝑖 ; (5)

∀ 𝑡,
𝑛−1∑︁
𝑖=0

𝑥𝑖 (𝑡) ≤ 𝐺 ; (6)

∀ 𝑖, 𝑇𝑖 (𝑥𝑖 (0) +min(1, 𝐺 −
𝑛−1∑︁
𝑖=0

𝑥𝑖 (0))) <= 𝑇𝑖 (𝑥𝑖 (0)) . (7)

In the formulations,

∑𝐷𝑖

𝑡=0
𝑥𝑖 (𝑡) is the total GPU time used by job

𝑖 with 𝑥𝑖 (𝑡) GPUs at time slot 𝑡 . Under sub-linear scaling, the more

GPUs are allocated to a job, the more GPU time it needs to reach

the termination condition. The objective is to minimize the total

GPU time consumed by all jobs. There are three constraints: (𝑖) all
jobs’ deadlines are guaranteed; (𝑖𝑖) the total allocated GPUs do not

exceed the number of available GPUs; (𝑖𝑖𝑖) all GPUs are allocated
in the next time slot unless adding more GPUs to any job would

make the job slower.

We develop a greedy algorithm to solve the problem. The intu-

ition is to allocate the remaining GPUs to the job with the highest

marginal return. Algorithm 2 shows the pseudocode. The algorithm

allocates at least the minimum satisfactory share 𝑎𝑖 to each job so

that the deadlines are guaranteed (line 4) and then maintains a pri-

ority queue to order the jobs (lines 5-11). The priority of a job is the

marginal return to add one extra GPU to it. The algorithm greedily

allocates one GPU each time (lines 12-24): for each iteration, the

algorithm removes the head from the queue (lines 13-14), allocates

one GPU to the job (line 18), computes the new marginal return of

the job (lines 18-22), and inserts the job back into the queue (lines

23-24). The iterations do not finish until all GPUs are allocated. We

have the following theorem for the optimality of the algorithm.

Theorem 2. Algorithm 2 computes an optimal allocation for the
resource allocation problem in formula (4-7), i.e., it finds the most effi-
cient allocation so that the GPUs are fully utilized while guaranteeing
the deadlines of all admitted jobs.

The main idea of the proof of the theorem is to show that al-

locating each GPU to the job with the highest marginal return

Algorithm 2 Resource Allocation

1: function ResourceAllocation(jobs)

2: for 𝑖 in 𝑗𝑜𝑏𝑠 do
3: // Allocate 𝑎𝑖 (0) to job 𝑖

4: 𝐺 ← 𝐺 − 𝑎𝑖 (0)
5: // Assume job 𝑖 gets 1 more GPU at time slot 0
6: // Calculate the marginal return of job 𝑖

7: 𝑥𝑖 (0) ← 𝑎𝑖 (0) + 1
8: ProgressiveFilling(𝑖 , 1)

9: 𝑖 .𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 ← ∑𝐷𝑖

𝑡=0
𝑎𝑖 (𝑡) −

∑𝐷𝑖

𝑡=0
𝑥𝑖 (𝑡)

10: if 𝑖 .𝑓 𝑖𝑛𝑖𝑠ℎ_𝑡𝑖𝑚𝑒 (𝑥𝑖 ) < 𝑖 .𝑓 𝑖𝑛𝑖𝑠ℎ_𝑡𝑖𝑚𝑒 (𝑎𝑖 ) then
11: Add jobs to priority queue 𝑄𝑢𝑒𝑢𝑒

12: while 𝐺 > 0 𝑎𝑛𝑑 !𝑄𝑢𝑒𝑢𝑒.𝑒𝑚𝑝𝑡𝑦 () do
13: // Pick the job with largest marginal return
14: 𝑖 ← 𝑄𝑢𝑒𝑢𝑒.𝑑𝑒𝑞𝑢𝑒𝑢𝑒 ()
15: // Assign 𝑥𝑖 (𝑡) as the new allocation of job 𝑖

16: for 𝑡 from 0 to 𝐷𝑖 do
17: 𝑎𝑖 (𝑡) ← 𝑥𝑖 (𝑡)
18: 𝐺 ← 𝐺 − 1
19: // Update the marginal return of job 𝑖

20: 𝑥𝑖 (0) ← 𝑎𝑖 (0) + 1
21: ProgressiveFilling(𝑖 , 1)

22: 𝑖 .𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 ← ∑𝐷𝑖

𝑡=0
𝑎𝑖 (𝑡) −

∑𝐷𝑖

𝑡=0
𝑥𝑖 (𝑡)

23: if 𝑖 .𝑓 𝑖𝑛𝑖𝑠ℎ_𝑡𝑖𝑚𝑒 (𝑥𝑖 ) < 𝑖 .𝑓 𝑖𝑛𝑖𝑠ℎ_𝑡𝑖𝑚𝑒 (𝑎𝑖 ) then
24: 𝑄𝑢𝑒𝑢𝑒.𝑖𝑛𝑠𝑒𝑟𝑡 (𝑖)

maximizes GPU utility. It applies induction to prove the general

case of multiple GPUs.

4.3 Job Placement
After the number of GPUs for a job is decided, the job needs to be

placed in the cluster, i.e., selecting which GPUs to run the job. As

we have shown in §3.2, the scaling curve of a job depends on the

placement. To make the problem more challenging, job placement

intertwines with admission control and resource allocation, because

they require scaling curves to make decisions. If admission control

uses a different scaling curve from the actual placement, the actual

job throughput may be lower than the one used by admission

control, leading to deadline violations.

A naive approach is to always use the most pessimistic scaling

curve, i.e., when all workers of a job are on different machines.

However, this potentially underestimates the throughput of a job,
and thus overestimates the resource usage. This would unnecessar-

ily reserve GPUs for admitted jobs, preventing the system from

admitting more.

Topology-aware job placement.We develop a topology-aware

job placement algorithm to address this problem. We use a multi-

layer hierarchical tree to capture the GPU topology where GPUs are

connected by different types of links with different bandwidths. The

leaf nodes of the tree represent GPUs. Each internal node indicates

a particular connection. Figure 5 shows an example of a server with

a 4-layer hierarchy. The server has two CPU sockets connected by

QPI. Each CPU is connected to four GPUs via PCIe. In GPU clusters,

multiple such servers can be connected by a Top-of-Rack (ToR)
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Figure 5: ElasticFlow organizes GPUs in a multi-layer hierar-
chy, and uses buddy allocation to minimize fragmentation.

switch in the same rack, which is the 5
th
layer in the hierarchy of

the cluster.

To place a job, we find a suitable subtree that contains sufficient

idle GPUs to accommodate the job. There can be multiple subtrees

that satisfy this requirement. This is a bin packing problem and

there are multiple heuristics. We use Best-Fit [54], which chooses

the subtree in which the number of idle GPUs is closest to the

number of GPUs needed. In this way, the job is allocated with the

highest possible bandwidth between its workers, thus avoiding

overestimating the resource usage of jobs. Therefore, job placement

can be decoupled from admission control and resource allocation.

Defragmentation with buddy allocation. Our algorithm is gen-

eral to jobs that require any number of GPUs, but the algorithm

cannot avoid resource fragmentation. We may not be able to find a

subtree for a job, but the cluster contains more GPUs than needed.

For example, suppose that there are two servers with the hierarchy

in Figure 5. If we allocate seven GPUs from server 1 to job A and

seven GPUs from server 2 to job B, we cannot find a layer-1 subtree

with two GPUs for job C, although there are two idle GPUs in the

cluster.

We apply buddy allocation combined with job migration used by

prior DL schedulers [27, 67] to eliminate resource fragmentation.

Similar to CoDDL [27], we restrict the number of workers of each

job to be a power of two. Under this condition, our algorithm

guarantees that there is no resource fragmentation. If the cluster

has enough idle GPUs for a job, there is a subtree that contains

enough GPUs.

4.4 Discussion
Handling jobs without deadlines. ElasticFlow can be extended

to support both SLO jobs (with deadlines) and best-effort jobs (with-

out deadlines). While best-effort jobs do not have deadlines, it is

desirable to finish them as soon as possible. The objective for this

scenario is to guarantee deadlines for SLO jobs and minimize the av-

erage JCT for best-effort jobs. ElasticFlow uses a unified framework

to support both kinds of jobs. It sets the deadlines of best-effort

jobs to infinite and allocates GPU resources to them after allocating

the minimum satisfactory shares to SLO jobs in Algorithm 2. We

show the evaluation results of supporting best-effort jobs in §6.5.

Dropped jobs and hard vs. soft deadlines. ElasticFlow provides

performance guarantees for hard deadlines and drops a job if its

Table 1: ElasticFlow API.

API Description

init_model() Initialize the DNN model to be trained.

set_hyperparameter(bs,

lr, kwargs)

Set the DL-related hyperparameters.

term_condition(kwargs) Set the termination condition.

set_deadine(ddl) Set the deadline.

init_dataset()

Process the data and return a dataset

that can be passed to a DataLoader.

init_optimizer() Return the optimizer for training.

train(dataset, model,

optimizer, kwargs)

Train the model for one iteration.

deadline cannot be satisfied. In practice, there are jobs with soft

deadlines: finishing them is still meaningful even if the deadlines are

missed. Supporting jobs with soft deadlines is similar to supporting

best-effort jobs. ElasticFlow puts them in the queue in Algorithm 2

and allocates resources to them after allocating the minimum satis-

factory shares to admitted jobs. This ensures that the deadlines for

admitted jobs are always guaranteed; other jobs finish as early as

possible.

Malicious users and admission control policies. We assume

that users are not malicious and set their job deadlines according to

their needs. Users may be able to game the system by manipulating

job submission frequency and deadlines. For example, a user may

submit many jobs with close deadlines to occupy all GPUs in the

cluster, preventing the system from admitting jobs from other users.

To address this problem, the cloud operator can use quotas (e.g., set

a maximum number of jobs that can be submitted by each user per

day) or charge users (e.g., the cost depends on the job size and the

deadline). The cloud operator can apply an extra policy or charge

the user before line 9 of Algorithm 1 to decide whether to actually

admit the job. Such policies and pricing models are orthogonal to

ElasticFlow and are interesting directions for future work.

Node failures. In real-world clusters, there might be random node

failures. ElasticFlow can be extended to consider node failures by

calculating their probability and reserving enough resources to

ensure a performance guarantee in such cases.

5 IMPLEMENTATION
We have implemented a prototype of ElasticFlow in 8,800+ LOC of

Python, including 5,600+ LOC for the scheduler and 3,200+ LOC

for elastic training. We integrate it with PyTorch 1.10.0 [48]. We

use PyTorch DistributedDataParallel (DDP) for distributed training,

NCCL [1] for communicating between workers, and gRPC [5] to

exchange control messages between the scheduler and workers.

ElasticFlow interface. ElasticFlow currently supports DL training

jobs written in PyTorch. PyTorch provides an official launch API in

PyTorch DDP to start distributed training, and ElasticFlow uses this

to launch distributed training jobs. As specified in §3, developers

submit their custom DNN model, the hyperparameters of the job,

the termination condition, the deadline and other training com-

ponents like dataset and optimizer to ElasticFlow. Table 1 shows

details of the API.
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Table 2: DNN models used in the evaluation.

Task Dataset Model Batch Size

CV ImageNet [16]

ResNet50 [25] 64, 128, 256

VGG16 [55] 64, 128, 256

Inception

V3 [58]

64, 128

NLP

CoLA [60] BERT [17] 64, 128

aclImdb V1 [41] GPT-2 [53] 128, 256

Speech

Recognition

LibriSpeech [47]

Deep

Speech 2 [8]

32, 64

Elastic scaling. ElasticFlow enables elastic scaling in a stop-free

manner in multi-node multi-GPU environments. Specifically, when

a new scheduling decision is made, ElasticFlow sends the param-

eters of the running jobs to the workers based on the scheduling

decision and then restarts the jobs from the received parameters.

The local batch size of each worker is adjusted to maintain the

same global batch size. If a running job is suspended, ElasticFlow

checkpoints the parameters until it restarts. To reduce the scaling

overhead, ElasticFlow does not delete the CUDA contexts on GPUs

and keeps all NCCL process groups active. We evaluate the scaling

and migration overheads in §6.6.

Throughput profiling. ElasticFlow makes scheduling decisions

based on simulating future job events such as job scaling and job

completion. The simulation is done by calculating the number of

iterations that can be completed by each job on every job event. To

precisely calculate the executed iterations, ElasticFlow first pre-runs

each job to profile its throughput with different numbers of GPUs.

Then, ElasticFlow profiles its throughput during job execution and

constantly adjusts the profiled throughput and scheduling decisions

accordingly. We evaluate the overhead of pre-run profiling in §6.6.

The overhead of profiling during job execution is about 0.01 s per

epoch, which is rather small as most jobs run for hours or even

days.

6 EVALUATION
6.1 Methodology
Testbed.Unless specified otherwise, the experiments are conducted

on a cluster with 16 ND A100 v4 servers [6] that includes 128

NVIDIA A100 GPUs in total. Each server is equipped with eight

40GB NVIDIA A100 GPUs, 96 CPU cores, 900GB RAM, and eight

NVIDIA Mellanox HDR InfiniBand HCAs.

Simulator. To evaluate ElasticFlow on larger scales, we develop a

simulator using the profiled information in real A100 GPUs. The

simulator simulates all job-level events, including job arrival, scal-

ing, and completion. We profile the throughputs of each job with

real GPU servers on the testbed as the input of the simulator. To

make the simulator more realistic, we have also measured the job

scaling overhead and incorporated it. The simulator assigns the

overhead to each job on each scheduling event, according to the

number of GPUs and the DNN model of the job. Our simulator has

very high fidelity, with an error rate of no more than 3% compared

with the results in our real cluster experiments.

Workloads. We collect two-month real-world traces from ten Mi-

crosoft’s internal ITP clusters [4]. The cluster size ranges from 164
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(a) Testbed experiments on 32 GPUs.
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(b) Testbed experiments on 128 GPUs.

Figure 6: Deadline satisfactory ratio in testbed experiments.

GPUs to 2,783 GPUs; the number of jobs in each trace ranges from

260 to 15,802. Testbed experiments use traces from one of the clus-

ters; simulations use all the collected traces to evaluate ElasticFlow

more comprehensively and on larger scales. Each job in the original

traces has information about submission time, number of GPUs,

and duration. For each job, we randomly choose a DNN model with

a batch size from a pool of representative settings listed in Table

2. Similar to previous work [27, 44], we use the duration in the

trace and the pre-measured throughput to calculate the number

of iterations needed to complete each job. As the traces do not

contain any deadline information, we set the deadline for a job

at 𝜆 · 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 after its submission, where 𝜆 is drawn uniformly

from [0.5, 1.5]. 𝜆 represents the tightness of the deadline. Note that

even when a job’s 𝜆 < 1, the cluster may still be able to complete

it before the deadline by scaling out the job with more GPUs. For

a fair comparison, we also evaluate ElasticFlow with the public

Microsoft Philly cluster trace [29].

Baselines. We compare ElasticFlow to six baselines.

• Earliest-Deadline-First (EDF): EDF is a canonical sched-
uling policy that optimizes for meeting deadlines [20]. It

orders jobs based on their deadlines and schedules jobs with

the earliest deadline first. It uses as many GPUs as a job can

scale out without decreasing the throughput.

• Gandiva:Gandiva [63] is a DL scheduler that uses introspec-
tive scheduling to refine scheduling decisions continuously.

It is not elastic (i.e., uses the number of GPUs specified in

job traces) and is not deadline-aware.

• Tiresias: Tiresias [21] uses two-dimensional scheduling al-

gorithms customized for DL jobs. It is also not elastic and is

not deadline-aware.

• Themis: Themis [42] provides finish-time fairness for DL

jobs. We follow the open-source implementation of Themis

in [44]. It is not deadline-aware.

• Chronus: Chronus [19] maximizes the number of SLO jobs

that can meet deadlines and minimizes the average JCT of

best-effort jobs. It is deadline-aware but not elastic.

• Pollux: Pollux [52] is a state-of-the-art scheduler for DL

jobs. It improves JCT by adaptively co-optimizing statisti-

cal efficiency and system throughput. It is elastic but not

deadline-aware.
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(a) GPU allocation of different schedulers over time.
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Figure 7: Comparison between different schedulers in testbed
experiments.

Evaluation metric. The design goal of ElasticFlow is to meet

deadlines for DL training jobs. Therefore, the evaluation metric

is deadline satisfactory ratio, which is the ratio of jobs that can

meet their deadlines. We also evaluate cluster efficiency (CE), which

measures how efficiently the resources in a cluster are being utilized.

Let 𝑀 be the number of GPUs in the cluster and 𝑡𝑝𝑡 represent

throughput, then

𝐶𝐸 :=
1

𝑀

𝑀∑︁
𝑖=1

𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑡𝑝𝑡 𝑜 𝑓 𝑡ℎ𝑒 𝑗𝑜𝑏 𝑜𝑛 𝐺𝑃𝑈𝑖

𝑡𝑝𝑡 𝑜 𝑓 𝑡ℎ𝑒 𝑗𝑜𝑏 𝑜𝑛 𝐺𝑃𝑈𝑖 𝑤𝑖𝑡ℎ 1 𝐺𝑃𝑈
. (8)

Because the admission control module of ElasticFlow may drop the

jobs with unachievable deadlines, we do not compare the scheduling

results on metrics such as JCT. We compare the JCT of best-effort

jobs when extending ElasticFlow to schedule both SLO and best-

effort jobs (§6.5).

6.2 End-to-End Results on a Real Testbed
We compare ElasticFlow and the baselines on a real GPU testbed.

We follow previous work [63] to speed up the experiments by fast-

forwarding. i.e., skipping a number of iterations if there are no

scheduling events for more than four minutes. The skipped time

is calculated by measuring the throughput when the job reaches a

stable state with the throughput profiling method described in §5.

Because Pollux requires the gradients of the DL models’ weight

during the training process, running DL jobs with Pollux cannot be

fast-forwarded. The makespan of running all DL jobs with Pollux

depends on the scale of the trace to run. We estimate that using

Pollux, running a two-day trace from our collected data on our

testbed costs more than $124,000 on Amazon AWS [2]. Due to

budget limitations, we first compare ElasticFlow and all baselines

on a small cluster of four servers with 32 GPUs and a small trace

with 25 jobs.

Figure 6(a) shows the results of comparing ElasticFlow with all

baselines. ElasticFlow improves the number of jobs that can meet

deadlines compared to EDF, Gandiva, Tiresias, Themis, Chronus,

and Pollux by 8.0×, 2.7×, 2.0×, 2.3×, 1.6×, and 2.0×, respectively.
ElasticFlow outperforms Gandiva, Tiresias, Themis, and Pollux

because it is deadline-aware and drops jobs whose deadlines cannot

be met. EDF and Chronus are not elastic and cannot fully utilize

GPU resources, leading to low deadline satisfactory ratios.

Then, we compare ElasticFlow with the baselines except for Pol-

lux on a larger scale (on 16 servers with 128 GPUs and a larger trace

with 195 jobs). As shown in Figure 6(b), ElasticFlow improves the

number of jobs that can meet deadlines compared to EDF, Gandiva,

Tiresias, Themis, and Chronus by 7.65 ×, 3.17×, 1.46×, 1.71×, and
1.62×, respectively. We will discuss the sources of improvement of

ElasticFlow in § 6.4.

Figure 7 shows the number of allocated GPUs and the number of

submitted and admitted jobs during execution on the testbed. From

the figure, we observe that when there are fewer jobs submitted to

the cluster, the resource contention in the cluster is low. ElasticFlow

can take full advantage of the idle GPU resources so that admitted

jobs can complete earlier. Schedulers such as Gandiva and Tiresias

are not elastic and thus cannot utilize idle GPUs. When there is a

burst of job submissions (e.g., the 13
th
hour), some jobs are dropped

to guarantee the deadlines of admitted jobs.

6.3 End-to-End Results in Simulations
We compare ElasticFlow and the baselines with simulation in more

settings. The simulation of Pollux requires profiling step time as

well as other detailed training statuses of thousands of DL model

settings and topology settings, and the estimated cost is about

$90,000 on Amazon AWS. We do not profile them on our testbed

due to budget limitations. Instead, we use the profiled data provided

by Pollux and transform the 195-job trace used in § 6.2 into the

form in which we can run the Pollux simulation. The data provided

by Pollux was profiled on a cluster of 16 servers with 64 NVIDIA

T4 GPUs. Figure 8(a) shows the simulation results. Similar to the

results of testbed experiments, ElasticFlow achieves a much higher

deadline satisfactory ratio than all baselines.

Figure 8(b) compares ElasticFlow with the baselines except for

Pollux on more traces and larger scales. We use the job traces col-

lected from ten Microsoft ITP clusters [4] and one public trace

of the Microsoft Philly cluster [29]. We observe that ElasticFlow

consistently outperforms the baselines in all traces. The deadline

satisfactory ratios of Gandiva and Tiresias do not change much

across the traces because they are not deadline-aware and lack

elasticity. In some traces (#9 and #10), EDF achieves a higher dead-

line satisfactory ratio than Gandiva, Tiresias, Themis, and Chronus.

This is because when the cluster size is large enough for the jobs

in these traces, EDF runs jobs with the earliest deadline first and

uses adequate GPU resources to finish them as quickly as possible.

However, EDF does not make the most efficient use of GPUs due

to the sub-linear scaling of DL training jobs. Therefore, in other

traces where the GPU resources in the cluster are not adequate, EDF
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Figure 8: Deadline satisfactory ratio under difference traces.
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Figure 9: Sources of improvement in ElasticFlow.
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Figure 10: Cluster efficiency of different schedulers.

performs poorly. On average, ElasticFlow improves the deadline sat-

isfactory ratio to 12.95×, 2.58×, 2.15×, 1.76×, and 1.68× compared

to EDF, Gandiva, Tiresias, Themis, and Chronus, respectively.

6.4 Sources of Improvement in ElasticFlow
Improvement in deadline satisfactory ratio. We analyze the

sources of improvement in ElasticFlow. ElasticFlow has two key

components, which are admission control and elastic scaling. To

show that both components are important, we develop two vari-

ants on top of EDF, which are EDF + Admission Control and EDF

+ Elastic Scaling. We vary the cluster size and keep the same load.

First, Figure 9 shows that both admission control and elastic scaling

contribute to the improvement of ElasticFlow, as admission control

drops the jobs with unachievable deadlines and elastic scaling ad-

justs the resource allocation in time according to the cluster status

and jobs’ deadlines. Only adding one of them to EDF performs

worse than ElasticFlow. Second, we observe that the gap between

EDF + Elastic Scaling and ElasticFlow decreases when the cluster
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Figure 11: Performance under a mix of SLO jobs (with dead-
lines) and best-effort jobs (without deadlines). (a) Deadline
satisfactory ratio of SLO jobs. (b) Average JCT of best-effort
jobs (normalized to Gandiva).

size increases. This is because, when the load is kept the same, most

jobs can be admitted with more GPUs, and elastic scaling is critical

to the improvement. On the other hand, when the cluster size is

small, admission control is important to avoid wasting resources

on jobs where the deadlines can never be met.

Improvement in CE. We evaluate how well ElasticFlow utilizes

cluster resources. We simulate the execution of a 100-job trace on

a 16-node cluster where each node has eight GPUs. If ElasticFlow

declines any job in the trace, the comparison is unfair to the base-

lines. Therefore, we set the deadlines to be loose enough to admit

all jobs (1.5× a job’s duration). This ensures that all solutions run
the same set of jobs. Figure 10 shows that ElasticFlow achieves a

higher CE than the baselines in the first 100 hours to save more

GPU resources for later jobs. This is because the resource alloca-

tion module allocates the idle GPUs in the cluster in such a way

that they are used efficiently. ElasticFlow also achieves the smallest

makespan when finishing all jobs.

6.5 Handling Jobs without Deadlines
ElasticFlow can schedule both SLO jobs and best-effort jobs. We

vary the percentage of best-effort jobs, and wemeasure the deadline

satisfactory ratio of SLO jobs and the average JCT of best-effort
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(b) Scaling and migration overheads of different cases.

Figure 12: System overheads of ElasticFlow.

jobs. Because the average JCT under EDF is too large compared to

other solutions, we normalize the average JCT of each solution to

that of Gandiva for illustration purposes. As shown in Figure 11,

ElasticFlow achieves the highest deadline satisfactory ratio for jobs

with deadline requirements among all the solutions. For traces with

10% of best-effort jobs, ElasticFlow achieves the smallest average

JCT for best-effort jobs. In other traces, ElasticFlow reserves more

GPU resources for jobs with deadline requirements and sacrifices

JCT for deadline satisfactory ratio as expected.

6.6 System Overheads
Profiling overheads. Figure 12(a) shows the profiling overheads

of different DL models. ElasticFlow profiles the throughput of each

new DL model with different numbers of GPUs along with different

batch sizes. ElasticFlow records the largest local batch size of each

job that the GPU memory can hold, and records the largest and

smallest number of GPUs for each job to avoid poor performance or

memory overflow. If adding more GPU to a job with a specific batch

size cannot increase the throughput of the given job, ElasticFlow

stops the profiling procedure for that batch size. As DL training

usually takes hours, days or even weeks, the profiling overhead is

marginal. There is no need to profile known/repeated jobs.

Scaling and migration overheads. The scaling and migration

overhead is the interval between “suspending a job” and “restart-
ing the job on a new set of GPUs”. Figure 12(b) shows the scaling
and migration overheads of different DL models for five cases. The

first four cases change the number of GPUs for a job, and the

fifth case changes the set of GPUs (i.e., migrating to eight GPUs

on another machine). Our current prototype uses simple check-

pointing/restoration available in PyTorch for scaling and migration.

When the number of GPUs is large, the overheads of the internal

implementation of checkpointing/restoration in PyTorch dominate.

When we scale up or down from a single GPU, the ElasticFlow over-

heads are visible. Therefore, the overheads of different cases are

similar; the variance is mostly from the internal implementation of

checkpointing/restoration in PyTorch. This implementation can be

further optimized by keeping the model weights in memory if the

GPU devices will train the same DL model after a scaling event. The

average scheduling interval of ElasticFlow on the real-world traces

we collected in a production system is about 23minutes. Compared

to the scheduling interval, the scaling and migration overheads are

marginal.

7 CONCLUSION
In this paper, we proposed ElasticFlow, an elastic serverless com-

puting platform for distributed training. ElasticFlow performs ad-

mission control based on minimum satisfactory share to guarantee

deadlines. We developed a scheduling algorithm that dynamically

allocates resources to admitted jobs based on diminishing returns.

ElasticFlow applies buddy allocation to job placement to eliminate

the effect of topology. The evaluation showed that ElasticFlow in-

creased the number of jobs for which deadlines can be met by

1.46–7.65× over existing solutions. This work does not raise any

ethical issues.
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A ARTIFACT APPENDIX
A.1 Abstract
The artifact provides source code for the prototype of the proposed

system ElasticFlow, including the main implementation of Elas-

ticFlow, testbed experiment scripts (§6.2 & §6.6), and cluster simu-

lation scripts (§6.3 & §6.4 & §6.5). We provide a docker image with
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pre-installed prerequisites to simplify the testbed experiment work-

flow. Users can also use a script to install all software dependencies

from scratch. Please refer to the documents in our repository for

more details.

A.2 Artifact Check-List (Meta-Information)
• Algorithm: The experiments evaluate the effectiveness of the

ElasticFlow algorithm. The baseline scheduling algorithms include

EDF, Gandiva, Tiresias, Themis, Chronus, and Pollux.

• Program: ElasticFlow/ElasticFlow/scheduler/scheduler.py
is the main program for evaluation. For more details, please refer to

the documents in our repository.

• Compilation: The experiments require the compilation of protobuf

and gRPC. Please refer to the README of our public code repository.

• Data set: We collect two-month real-world traces from ten Mi-

crosoft’s internal ITP clusters. The collected traces are publicly

available at https://github.com/microsoft/elasticflow-traces.

• Run-time environment: The simulation scripts require Python3.8.

The testbed experiments require Docker. We provide a docker image

with other dependencies pre-installed.

• Hardware: The simulation experiments can be conducted on a

server or a laptop. The testbed experiments require up to 16 servers,

each with eight NVIDIA A100 40GB SXMGPUs, 96 AMD Epyc 7V12

(Rome) CPU cores, 900GB RAM, and eight NVIDIA Mellanox HDR

InfiniBand HCAs. NVMe is required to speed up the I/O process. The

provided scripts can be executed on Azure Standard_ND96asr_A100

VMs [6].

• Execution: Scripts and commands for execution are provided in

our repository. Please refer to the document.

• Metrics: The main metric of our experiments is Deadline Satisfac-

tory Ratio, which is the ratio of jobs that can meet their deadlines.

• Output: The final results are printed in stdout. The details are

recorded in CSV files.

• How much disk space required (approximately)?: The simula-

tion experiments require about 5GB of disk space for the logs. The

testbed experiments require at least 160GB NVMe storage on each

node.

• How much time is needed to prepare workflow (approxi-
mately)?: A few hours.

• How much time is needed to complete experiments (approxi-
mately)?: The main results of simulation experiments (Figure 8(a))

take about half an hour. The rest of the simulation results take a few

days. The testbed experiments of the Pollux baseline take about one

day, and the testbed experiments of each of the other scheduling

algorithms take a few hours. In total, it takes about a week to finish

all of the experiments.

• Publicly available?: The code is publicly available at https://github.
com/pkusys/ElasticFlow and the job traces are publicly available at

https://github.com/microsoft/elasticflow-traces.

• Code licenses: Apache License 2.0.
• Data licenses: MIT License.

• Archived: https://doi.org/10.5281/zenodo.7481637

A.3 Description
A.3.1 How to Access. Clone the git repository at https://github.

com/pkusys/ElasticFlow, including its submodules. An archived

copy is also available [22].

A.3.2 Hardware Dependencies. The simulation experiments can

be conducted on a server or a laptop. The testbed experiments can

be executed on Azure Standard_ND96asr_A100 VMs [6]. Please

adjust the scripts accordingly if the testbed has a different hardware

configuration.

A.3.3 Software Dependencies. The simulation experiments require

Python3.8. The testbed experiments require Docker. We provide a

docker image with other dependencies pre-installed.

A.3.4 Data Sets. The job traces that we collected are publicly avail-
able [4]. Scripts are provided to parse the traces. The job traces

for some other experiments can be automatically generated by the

scripts that we provided. To download the datasets for DL training

in testbed experiments, please refer to our documents.

A.4 Installation
The artifact can be downloaded and accessed as -

$ git clone --recursive https://github.com/pkusys/
ElasticFlow.git
$ cd ElasticFlow

A.5 Experiment Workflow
The detailed workflow, including configuring environments, exe-

cuting the experiments, parsing the results, and plotting figures, is

described in the documents of our repository.

A.6 Evaluation and Expected Results
The numbers of accepted jobs are printed in stdout, and the detailed

results are recorded in CSV files. The log files can be found in the

ElasticFlow/plot_figure/logs/ directory. The reports can be

matched against the figures reported in the paper.
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