
Optimizing Half Precision Winograd Convolution on ARM
Many-Core Processors

Dedong Xie∗
University of Toronto

Zhen Jia
Amazon Web Services

Zili Zhang
Peking University

Xin Jin
Peking University

ABSTRACT
Convolutional Neural Networks (CNNs) are widely used in real
world applications, e.g, computer vision. Winograd based convo-
lution is usually applied due to its low computation complexity.
For the underling hardware, ARM many-core CPUs, by their price
performance, are favored by cloud providers like Amazon Web
Services (AWS). However, existing Winograd convolution imple-
mentations for ARM architecture are mostly optimized for mobile
devices, and usually cannot fully utilize hardware resources of
many-core processors. In this paper, we propose HAWC, an opti-
mized half precision floating-point (FP16) Winograd convolution
implementation for ARM many-core processors. HAWC employs a
series of optimization methods, which are suitable for ARM NEON
architecture, and assembles them as an entire solution to improve
performance. Our evaluation shows that HAWC achieves on aver-
age 10.74× and up to 27.56× speedup on representative convolution
layers over state-of-the-art solutions.

CCS CONCEPTS
• Theory of computation→Massively parallel algorithms; •
Computing methodologies→ Neural networks; • Software
and its engineering→ Just-in-time compilers.

KEYWORDS
Convolution, Winograd, Parallelization, Vectorization
ACM Reference Format:
Dedong Xie, Zhen Jia, Zili Zhang, and Xin Jin. 2022. Optimizing Half Pre-
cision Winograd Convolution on ARM Many-Core Processors. In 13th
ACM SIGOPS Asia-Pacific Workshop on Systems (APSys ’22), August 23–
24, 2022, Virtual Event, Singapore. ACM, New York, NY, USA, 8 pages.
https://doi.org/10.1145/3546591.3547529

1 INTRODUCTION
Convolutional Neural Networks (CNNs) are widely used in real ap-
plication scenarios including recommendation and recognition [15,
22, 26]. CNNs can effectively excavate the hidden meaning of the
∗Work done during Dedong’s internship at AWS.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
APSys ’22, August 23–24, 2022, Virtual Event, Singapore
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9441-3/22/08. . . $15.00
https://doi.org/10.1145/3546591.3547529

input image through the convolution layers and have become one of
the most actively researched and applied models in deep learning.

Cloud providers are always focusing on providing flexible and
efficient services to customers. Besides GPUs, CPUs can also run
deep learning inference. To achieve high price performance, ARM
many-core processors are becoming one of the primary choices.
For instance, AWS has released Graviton ARM-based many-core
processors, which are designed to have high price performance [11,
27].

From the perspective of algorithms, low precision computation
can be used to increase the computation speed. Previous studies
have demonstrated that low precision computation can greatly
reduce memory footprint and provide faster computations at low or
even no accuracy loss for neural networks [2, 18, 30]. On the other
hand, Winograd based convolution [29] was recently proposed as
a state-of-the-art solution due to its ability to reduce the number
of operations. Since then, it has attracted a lot of follow-up studies
to optimize it on diverse hardware. A combination of low precision
and Winograd can bring further performance improvements.

Half precision computation, a sub-class of low precision com-
puting, is well supported in ARM architecture and there are many
open source libraries, e.g, NCNN [25] and MNN [12], which employ
half precision (i.e., FP16) Winograd based convolution. However,
existing work on ARM is mostly optimized for multi-core mobile
CPUs, not ARM many-core processors. In some situations, Wino-
grad based convolution could be slower than direct convolution,
even though Winograd convolution has lower computation com-
plexity than direct convolution (§2.1). This is because the increasing
number of cores aggravates memory system’s pressure and hurts
the performance of I/O bound stage in Winograd algorithm. So
a multi-core optimized implementation may not scale well on a
many-core platform.

We propose HAWC: an efficient Half precision, ARM many-
core processor optimized, Winograd Convolution implementation.
HAWC consists of three stages: 1) input and kernel transformation,
2) matrix multiplication and 3) output transformation. Among these,
input, kernel and output transformations are memory bound, while
matrix multiplication is computation bound. We employ a custom
data layout to fully vectorize all the computation and maximize data
re-use. In order to hide the memory operation latency, we overlap
the computation and data transformation across stages. A custom
matrix-matrix multiplication kernel (GEMM) is implemented to
achieve high resource utilization on ARM many-core CPUs. Finally,
we employ a static job scheduler to assign each job at compilation
time to reduce runtime overhead and balance the workload on each

https://doi.org/10.1145/3546591.3547529
https://doi.org/10.1145/3546591.3547529

APSys ’22, August 23–24, 2022, Virtual Event, Singapore Dedong Xie, Zhen Jia, Zili Zhang, and Xin Jin

thread. We combine these optimizations into a coherent system to
optimize the performance of Winograd convolution.

Our contributions are summarized as below:
• We propose HAWC, an efficient implementation of FP16
Winograd convolution optimized on ARM many-core pro-
cessors. We apply various optimizations to achieve high
performance.
• We design a custom JIT-compiled matrix multiplication ker-
nel for Winograd convolution to take fully advantage of
ARM NEON ISA.
• We perform comprehensive evaluations on Graviton 2 plat-
form. The experimental results show that our implementa-
tion achieves acceptable accuracy with on average 10.74×
and up to 27.56× speedup on representative convolution
layers.

2 BACKGROUND AND MOTIVATION
2.1 Winograd-based Convolution
Convolution is a mathematical function that slides a kernel along
the input image to excavate the local meaning of the input image. In
each individual step, a sub image and kernel are element-wise mul-
tiplied and accumulated to produce the final output value [7]. For
direct convolution, computing a size𝑚 output with a size 𝑟 kernel
requires𝑚 × 𝑟 multiplications. Winograd based convolution [29]
shows an opportunity that requires only𝑚 + 𝑟 − 1 multiplications.
A 2𝐷 Winograd based convolutions between kernel 𝐾 of size 𝑟 × 𝑟
and input image 𝐼 of size (𝑚 + 𝑟 − 1) × (𝑚 + 𝑟 − 1), generating an
output 𝑂 of size𝑚 ×𝑚 is denoted as 𝐹 (𝑚 ×𝑚, 𝑟 × 𝑟) and can be
expressed as:

𝑂 = 𝐴𝑇 [(𝐺𝐾𝐺𝑇) ⊙ (𝐵𝑇 𝐼𝐵)]𝐴 (1)

where ⊙ represents element-wisemultiplication andmatrices𝐴,𝐺, 𝐵
are transformation matrices determined by Chinese remainder the-
orem [14, 29]. With the transformations, the convolution can be
done efficiently by taking the common parts of the calculation, then
storing the intermediate results and re-using them to reduce the
number of multiplications needed. More details of Winograd based
convolution can be found in [29].

By dividing the input image into overlapping tiles and apply-
ing the overlapping-add (OLA) method [21], all convolutions with
kernel of size 𝑟 × 𝑟 can be calculated through the same algorithm
of 𝐹 (𝑚 ×𝑚, 𝑟 × 𝑟). For multi-channel convolutions, the accumula-
tion of output from element-wise multiplications along the channel
dimension is equivalent to a matrix multiplication.

TheWinograd based convolution can be transformed to a process
consisting of three stages: 1) input and kernel transformation, 2)
matrix multiplication, and 3) output transformation.

2.2 Half precision Arithmetic on ARM
Previous work [2, 18, 30] has demonstrated that for neural net-
works, half precision floating point (FP16) computation is stable
with no significant accuracy loss and can reduce memory footprint.
This motivates us to take advantage of FP16 data format to perform
Winograd convolution: FP16 instruction doubles the speed of com-
putation and halves the size of data movement, which benefits both
computation bound and I/O bound stages in Winograd algorithm.

Procedure 1: FMLA V1.8H, V2.8H, V3.8H
input :Three vector registers V1, V2, and V3

1 for 𝑖 ← 0 to 7 do
2 V1[i] += V2[i] * V3[i];
3 end for

Cin
Input Image Kernels

Cout

Cin

Input
Transformation Kernel

Transformation

X
Matrix

Multiplication

Scatter Scatter

v

v

Transformed
Inputs

Transformed
KernelsA

A

A

K

A1, A2, . . K1
K2
:

Accumulate
Results

ScatterOutput
Transformation

Output
Image

Cout

I

I'

K

K'

O'

O"O

Figure 1: The workflow of our algorithm.

ARM NEON ISA [5] provides the instructions operating on half
precision floating point data. On ARM Neoverse-N1 core, a set of 32
128-bits long vector registers named by V0 to V31 is used to achieve
SIMD operations on different sizes of data. For FP16 operations,
each register can hold 8 lanes of half precision floating point data.
Fused multiply-add (FMLA) instruction is also supported in the ISA
so the theoretical FLOPS is doubled. A single SIMD instruction’s
semantics are shown in Procedure 1. Apart from register-wise op-
erations, operations on a single lane or all lanes are supported. The
FMLA can be applied to one lane in the third operand to produce
scalar by-element multiply-add.

3 DESIGN
This section introduces the overall design of HAWC, which provides
optimized FP16 Winograd based convolution implementation for
ARM many-core processors. We first describe the data layout (§3.1),
which decides how we store data. We then introduce the implemen-
tation and optimizations in each stage including input and kernel
transformation (§3.2), matrix multiplication (§3.3) and output trans-
formation (§3.4) as illustrated in Figure 1. Finally, we introduce the
stage-wise scheduler to achieve efficient parallel processing (§3.5).

3.1 Data Layout
Data layout is crucial for performance as it determines how data
is stored, accessed, and used. In this subsection, we present the
custom data layout of HAWC, inspired by state-of-the-art imple-
mentations on a different platform [10, 31]. The data layout is listed
in Table 1 where the elements in brackets represent the correspond-
ing dimensions. The layout is designed for three main requests:
apply vectorization, maximize data re-use, and gain low-latency
memory access.

Optimizing Half Precision Winograd Convolution on ARM Many-Core Processors APSys ’22, August 23–24, 2022, Virtual Event, Singapore

Variable Symbol Data Layout

input Image 𝐼𝑏,𝑐𝑖𝑛 [𝐵] [𝐶𝑖𝑛

𝑣] [𝐷𝑖𝑛] [𝐻𝑖𝑛] [𝑊𝑖𝑛] [𝑣]
Transformed inputs 𝐼 ′

𝑏,𝑐𝑖𝑛,𝑡
[𝑇 ·𝐵
𝑇𝑏
] [𝐶𝑖𝑛

𝐶𝑏
] [𝑇𝑠𝑖𝑧𝑒] [𝐶𝑏] [𝑇𝑏]

Kernels 𝐾𝑐𝑖𝑛,𝑐𝑜𝑢𝑡 [𝐶𝑖𝑛] [𝐶𝑜𝑢𝑡

𝑣] [𝐷𝐾] [𝐻𝐾] [𝑊𝐾] [𝑣]
Transformed Kernels 𝐾 ′𝑐𝑖𝑛,𝑐𝑜𝑢𝑡 [𝐶𝑖𝑛

𝐶𝑏
] [𝐶𝑜𝑢𝑡

𝐶𝑏′] [𝑇𝑠𝑖𝑧𝑒] [𝐶𝑏] [𝐶𝑏
′]

Intermediate Matrices 𝑂 ′
𝑏,𝑐𝑜𝑢𝑡 ,𝑡

[𝑇𝑛 ·𝐵
𝑇𝑏
] [𝐶𝑜𝑢𝑡

𝐶𝑏′] [𝑇𝑠𝑖𝑧𝑒] [𝑇𝑏] [𝐶𝑏
′]

Pre-Transform Outputs 𝑂”𝑏,𝑐𝑜𝑢𝑡 ,𝑡 [𝐵] [𝐶𝑜𝑢𝑡

𝑣] [𝑇𝑠𝑖𝑧𝑒] [𝐷𝑇] [𝐻𝑇] [𝑊𝑇] [𝑣]
Output Image 𝑂𝑏,𝑐𝑜𝑢𝑡 [𝐵] [𝐶𝑜𝑢𝑡

𝑣] [𝐷𝑜𝑢𝑡] [𝐻𝑜𝑢𝑡] [𝑊𝑜𝑢𝑡] [𝑣]

Table 1: Data layout.

To support vector arithmetic, we use a packed data layout that
packs 𝑣 = 8 channels of an image into continuous data segments.
The selection of 8 is based on the following facts: vector registers
of ARM architecture accommodates 8 lanes of FP16 data; modern
CNNs are designed to have convolution layers’ channel number
divisible by 16, and hence the channel number is also divisible by 8.
With this technique, a batch of input images with each image of𝐶𝑖𝑛
channels are stored in a row-major array of size 𝐵× (𝐶𝑖𝑛/𝑣) ×𝐷𝑖𝑛 ×
𝐻𝑖𝑛 ×𝑊𝑖𝑛 × 𝑣 . Similarly, the kernels are also stored in a row-major
array of size 𝐶𝑖𝑛 × (𝐶𝑜𝑢𝑡/𝑣) × 𝐷𝑘 ×𝐻𝑘 ×𝑊𝑘 × 𝑣 . Furthermore, the
same pattern applies to output images.

To increase data re-use and reduce access latency, we break
the transformed inputs and transformed kernels into sub-matrices
of size 𝑇𝑏 ×𝐶𝑏 and 𝐶𝑏 ×𝐶𝑏 ′, respectively. The determination of
blocking sizes is explained in §3.3. Such strategy will support the
calculation of matrix multiplication to be done in small blocks that
can be fully stored in cache and stay in cache as long as possible
until all computations they involve are done. This will increase
locality and make use of caching to ensure fast data access.

3.2 Input and Kernel Transformation
The first stage of Winograd-based convolution is to apply the trans-
formation on the input image 𝐼 (Figure 1). The transformation
computes the result of 𝐵𝑇 𝐼𝐵. As described in §2.1, we divide the
input image into overlapping tiles and apply the same transforma-
tion to each tile. In HAWC, the transform matrix 𝐵 is generated by
Wincnn [13]. During the transformation, we re-use intermediate
values to accelerate the computations. Apart from this, the input
and output transformations are coded in NEON SIMD intrinsic [6]
to apply vector computations.

To further reduce the compilation and execution overhead, we
code the desired transformation on the input tiles using c++ tem-
plates with respect to variables𝑚 and 𝑟 , so only the transformation
codelet of the specific 𝐹 (𝑚, 𝑟) is compiled and executed. Similar
process is applied to kernel transformation. For inference tasks, the
kernels are pre-transformed to further reduce overall latency.

Another optimization involved in input transformation is the
scattering of transformed tiles to sub-matrices of transformed in-
puts and kernels. Instead of storing the transformed tiles, we scat-
ter the tiles to their position in corresponding sub-matrices as
described in the data layout of transformed inputs and transformed
kernels. By doing so, each sub-matrix from transformed inputs and
transformed kernels will contain the tiles needed for matrix-matrix
multiplication in continuous memory space. This arrangement will

then reduce the overhead for matrix-matrix multiplication stage as
data of sub-matrices is localized.

3.3 Matrix Multiplication
In this stage, we perform batched matrix-matrix multiplication be-
tween transformed inputs (𝐼 ′) and transformed kernels (𝐾 ′). There
are total (𝑚+𝑟−1)×(𝑚+𝑟−1) matrix multiplications. However, the
transformed inputs (𝐼 ′) and transformed kernels (𝐾 ′) are usually
tall and skinny matrices so that they can not fit into cache. Forcing
transformed inputs and kernels into cache will result in poor data
locality. In order to increase data re-use and further optimized the
matrix multiplication efficient, we performance matrix blocking on
the transformed inputs and transformed kernels. The transformed
inputs of size 𝑇𝐵 ×𝐶𝑖𝑛 ×𝑇𝑠𝑖𝑧𝑒 is divided into ⌈𝑇𝐵

𝑇𝑏
⌉ · ⌈𝐶𝑖𝑛

𝐶𝑏
⌉ ·𝑇𝑠𝑖𝑧𝑒

sub-matrices,𝑈𝑖, 𝑗 , each of size 𝑇𝑏 ×𝐶𝑏. Similarly, transformed ker-
nels is divided into ⌈𝐶𝑖𝑛

𝐶𝑏
⌉ · ⌈𝐶𝑜𝑢𝑡

𝐶𝑏′ ⌉ · 𝑇𝑠𝑖𝑧𝑒 sub-matrices, 𝑉𝑗,𝑘 , each
of size 𝐶𝑏 ×𝐶𝑏 ′. In order to get the correct result, we need to per-
form matrix multiplications between sub-matrix 𝑈 and 𝑉 . For the
sub-matrix multiplication loop, we reuse the sub-matrix𝑉 and load
different 𝑈 s for each computation. To be specific, after we finish
𝑈𝑖, 𝑗 × 𝑉𝑗,𝑘 , we will execute 𝑈𝑖+1, 𝑗 × 𝑉𝑗,𝑘 . By caching the 𝑉𝑗,𝑘 we
eliminate the unnecessary memory accesses.

JIT compiled matrix multiplication kernel.We employ just-in-
time (JIT) compile technique to generate assembly code to perform
matrix multiplication for different matrix shapes. This design gives
us the flexibility to generate code for diverse matrix blocking and
register blocking strategies through using different blocking pa-
rameters. At the same time, coding at assembly level enables us to
tune for the specific hardware to achieve higher performance.

For each single pair of sub-matrix multiplication between trans-
formed inputs and transformed kernels, 𝑈 × 𝑉 = 𝑌 , we apply
register blocking, where the inner loop computation (Procedure 2)
is between a block of size𝑇𝑏 × 8 of𝑈 and a block of size 8 × 8 of𝑉 .
The sizes of these blocks are determined by the need of fitting data
into vector registers: 8 lanes of FP16 data in each vector register. We
use the notation of registers𝑈 (𝑛),𝑉 (𝑛), 𝑌 (𝑛) as shown in Figure 2
to represent the registers holding data of different matrices. This
matrix multiplication is illustrated by Procedure 2. We first load a
block of size 𝑇𝑏 × 8 from𝑈 to 𝑇𝑏 vector registers. In addition, we
load a vector register with 8 FP16 data in a row from 𝑉 . Then we
loop through all𝑇𝑏 registers to execute FMLA on data from𝑉 then
accumulate to𝑌 . Figure 2 shows the execution of one FMLA instruc-
tion in the procedure. We repeat the previous steps through all the
8 result registers 𝑌 (𝑛) until 𝑌 is computed. Here we unroll all the
computation and memory access loops so that we will have a large
number of continues computation instructions or store instructions
that can be pipelined so that the latency is hidden.

As for the efficient memory access during the multiplication
procedure, we use the method of pre-set offsets with ARM’s post-
index offset load and store. The accessed memory position for each
register can be calculated based on the position by adding constant
offsets. Therefore, we are able to use general purpose registers
to store the memory offset for the 1st, 3rd, 5th row of the matrix
and base registers to store the position of the 1st and 7th row.
Through this mechanism, the memory position to load/store can
be described by base register, offset register, and shifting factor in a

APSys ’22, August 23–24, 2022, Virtual Event, Singapore Dedong Xie, Zhen Jia, Zili Zhang, and Xin Jin

Procedure 2: Unit Multiplication of Matrices
1 for 𝑖 ← 0 to 7 do ⊲ unrolled
2 for 𝑗 ← 0 to 𝑇𝑏 − 1 do ⊲ unrolled
3 if 𝑖 == 0 then
4 𝐿𝑜𝑎𝑑 U(j).8H
5 end if
6 FMLA Y(j).8H, V(i%4).8H, U(j).H[i]
7 end for
8 𝐿𝑜𝑎𝑑 V((i+1)%4).8H
9 end for

10 for 𝑘 ← 0 to 𝑇𝑏 − 1 do ⊲ unrolled
11 𝑆𝑡𝑜𝑟𝑒 Y(k).8H
12 end for

.

.

.

.

.

.

.

.

.

.

.

.

FMLA Y(4).8H, V(2).8H, U(4).H[2]

Transformed inputs in
register

Vector register contains the
broadcasted element

Broadcasted element as the
third operand of FMLA

Vector register being
multiplied

Registers accumulate
products

Register accumulates results
from this FMLA

V(0)
V(1)
V(2)

U(0)
U(1)
U(2)
U(3)
U(4)
U(5)

U(Tb-1)

U
V

Y

Y(0)
Y(1)
Y(2)
Y(3)
Y(4)
Y(5)

Y(Tb-1)

V(3)

Figure 2: Execution of one FMLA instruction in our JIT com-
piled matrix multiplication.

single instruction. With the aforementioned computation of offsets
integrated in one instruction occupying one clock cycle on ARM
processors, we save extra instructions and clock cycles. Compared
to calculating the memory location through multiplication, shift,
and addition, this will reduce the required clock cycles for each
store or load from 3 to 1.

Another ARM-specific instruction adopted by HAWC is the post-
index version of loading 1-element structure to register, LD1. This
instruction loads from memory and then updates the base register
by adding an offset. The use of this instruction greatly saves the
computation time when HAWC works on matrices. This is because
matrix has continuous data layout with fixed offsets between cells
and rows. The load of an entire row or column of 𝑛 elements can
hence be implemented with 𝑛 post-index LD1, while manually
updating base register requires 𝑛 extra additions.

Blocking size determination.We follow the guidelines described
in [10, 16], to determine our blocking parameters. According to
the Roofline model [28], we would like to let our implementation
have an arithmetic intensity (operations per moved byte) as high as
possible to make sure the performance is not bounded by memory
I/O. We calculate the arithmetic intensity as follows: 1) The number
of floating-point computation needed for eachmatrix multiplication
is 2𝑇𝑏𝐶𝑏𝐶𝑏 ′ (computation performed between a matrix of size of
𝑇𝑏 ×𝐶𝑏 and a matrix of size 𝐶𝑏 ×𝐶𝑏 ′, generating a matrix of size
𝑇𝑏 ×𝐶𝑏 ′). 2) In this matrix multiplication procedure, we use one
𝑉 to multiply with all the corresponding 𝑈 s and accumulate the

results to 𝑌 s. This procedure can be expressed as 𝑌 = 𝛾𝑌 +𝑈 ×𝑉 .
Only in the first iteration of sub-matrices multiplication, we can
set 𝛾 = 0. For all the other cases, we need to set 𝛾 = 1 as we need
to accumulate the result. So, the majority of cases is when 𝛾 = 1
and we have the procedure being 𝑌 = 𝑌 +𝑈 ×𝑉 . Hence, in each
pass of the procedure, we need to load 𝑈 and the corresponding
𝑌 to accumulate results. 𝑉 is cached and can assume the number
of loaded bytes is amortized. This takes 𝑇𝑏𝐶𝑏 + 𝑇𝑏𝐶𝑏 ′ loads. In
addition, by the end of one pass of the procedure, we have to store
𝑌 , yielding 𝑇𝑏𝐶𝑏 ′ stores. In total, there are 𝑇𝑏 (2𝐶𝑏 ′ + 𝐶𝑏) FP16
data load/store, which is 2𝑇𝑏 (2𝐶𝑏 ′ +𝐶𝑏) bytes. 3) Therefore, the
arithmetic intensity 𝐴𝐼 can be calculated by dividing FLOPS by
bytes of memory traffic: 𝐴𝐼 = 2𝑇𝑏𝐶𝑏𝐶𝑏′

2𝑇𝑏 (2𝐶𝑏′+𝐶𝑏) =
𝐶𝑏𝐶𝑏′

2𝐶𝑏′+𝐶𝑏 .
As illustrated in the Roofline model [28], when the application’s

arithmetic intensity is higher than the compute-to-memory ratio
of the platform, the application falls in the ideal situation when the
performance is compute-bound instead of memory I/O bound. The
Graviton 2 platform’s compute-to-memory for FP16 data is 25.6
(5120 GFLOPSwithmemory bandwidth of 200 GBytes/s [27]).When
𝐶𝑏 = 64,𝐶𝑏 ′ = 128, the compute-to-memory ratio is 32, higher than
the hardware’s compute-to-memory ratio.When𝐶𝑏 = 𝐶𝑏 ′ = 64, the
compute-to-memory ratio is only 21.33, lower than the threshold,
meaning the matrix multiplication will be memory bound. From the
previous analysis, we know that the greater𝐶𝑏 and𝐶𝑏 ′, the higher
the arithmetic intensity could achieve. However, the parameters
for sub-matrices, 𝐶𝑏, 𝐶𝑏 ′, and 𝑇𝑏 should also follow the following
restrictions:

• 𝐶𝑖𝑛 should be divisible by𝐶𝑏 and𝐶𝑜𝑢𝑡 should be divisible by
𝐶𝑏 ′. Otherwise, zero padding is needed and will cost extra
unnecessary computations.
• Both 𝐶𝑏 and 𝐶𝑏 ′ should be divisible by 8. This is to align
data with the 8 lanes of FP16 data in ARM vector registers.
• 𝑇𝑏 should be no greater than 14. As 𝑇𝑏 corresponds to the
number of registers we can use for transformed inputs in
JIT-compiled matrix multiplication.
• Matrix𝑈 ,𝑉 , and 𝑌 should fit into cache. So, there is no data
movement back and forth between cache and memory.

As for the selection of 𝑇𝑏, higher 𝑇𝑏 increase the number of
FMLA instructions to be pipelined, which could help hide the in-
struction latency. However, large 𝑇𝑏 may also decrease 𝐶𝑏 and 𝐶𝑏 ′
as we need fit𝑈 ,𝑉 and 𝑌 into cache. Also, when𝑇𝑏 does not divide
𝑇𝐵, we need to perform zero padding, increasing the number of
operations. Therefore, the determination of 𝑇𝑏 cannot be easily
calculated. On the other hand, as 𝑇𝑏 has a relatively small search
space (from 1 to 14), empirical determination is available at low
cost of time. For this reason and the fact that layer dimensions are
given in advance, we empirically determine the best value of 𝑇𝑏
through benchmarking.

Scattering of matrices’ product. The challenge of output trans-
formation stage is the time-consuming gathering of tiled data from
different matrices. The gathering triggers non-continues data access
from different matrices, resulting in poor data locality. Furthermore,
this situation gets even worse as tile size increases. Inspired by [10],
instead of storing the results from matrix multiplication continu-
ously, we scatter the results (i.e., 𝑌) to the locations in the tiles of

Optimizing Half Precision Winograd Convolution on ARM Many-Core Processors APSys ’22, August 23–24, 2022, Virtual Event, Singapore

output image. By using scattering at the end of matrix multiplica-
tion stage, we reform tiles in memory so that output transformation
stage read data continuously.

On x86 platform [10, 17], the best performance of such scattering
strategy is achieved by using streaming store that writes to memory
without caching. This technique eliminates the overhead caused by
scattering store. While there exists streaming store instruction in
ARM, the store a pair of registers with non-temporal hint (STNP),
ARM A64 ISA [1] only supports general purpose register as its
operands. In order to use streaming store, we must move the data
from vector register to general purpose registers before each store
of pairs of registers. This introduces two extra instructions and
triples the number of instructions for a single store. Such move and
store is inefficient, requiring even more cycles than it could save
compared to normal store. Therefore, HAWC uses normal store
with scattering, instead.

3.4 Output Transformation
Apart from the aforementioned optimization of data scattering after
matrix multiplication for efficient memory access, HAWC performs
the output transformation with the same set of optimizations for
input transformations in §3.2.

3.5 Stage-wise Static Parallel Scheduling
To minimize scheduling overhead and achieve high level of paral-
lelism through multi-threading, HAWC uses a static scheduler. This
is possible as the parameters of the layer and the number of cores
to be used are determined before actually running the network.
To further reduce the cost of thread scheduling and management,
HAWC optimizes the complexity of the scheduler and minimizes
the number of barriers set for synchronization. Inspired by previ-
ous work [10, 19], instead of using widely-used OpenMP [4], we
implement a simplified scheduler with c++ atomics that applies
busy-wait strategy for synchronization. Besides, instead of imple-
menting parallel on loop, we apply multi-threading on stage level.
In our implementation, only three barriers are set at the end of each
stage. Through this strategy, the number of barriers is minimized,
and the latency caused by rapid synchronizations is reduced.

Workload balance on different threads is another challenge in
achieving high performance for a parallel system. Through dividing
inputs of each stage to tiles or blocks, all data in HAWC is in the
form of continuous memory chunks. As all chunks of data are of
the same size with unified data layout, we evenly assign the chunks
to threads. In the ideal situation, all threads will finish at the same
time and hence achieve perfect parallelism.

4 EVALUATION
4.1 Experiments Setup
Instance configuration. We perform the evaluation on Graviton
2 ARM many-core platform. We use an AWS m6g.metal instance,
deployed with Ubuntu 18.04 (18.04.6 LTS) and configured with
256 GB 8-channel DDR4 memory with a bandwidth of over 200
GBytes/s [27]. The AWS m6g.metal instance has 64 cores; each
runs at a frequency of 2.5𝐺𝐻𝑧. The SIMD-length is 128 bits, so for
FP16 computation with fused multiply add (FMLA) support, the

Layer 𝐶𝑖𝑛 𝐶𝑜𝑢𝑡 Input Size Kernel Size

VGG 1.2 64 64 < 224, 224 > < 3, 3 >

VGG 2.2 128 128 < 112, 112 > < 3, 3 >

VGG 3.2 256 256 < 56, 56 > < 3, 3 >

VGG 4.2 512 512 < 28, 28 > < 3, 3 >

VGG 5.2 512 512 < 14, 14 > < 3, 3 >

FusionNet 1.2 64 64 < 640, 640 > < 3, 3 >

FusionNet 2.2 128 128 < 320, 320 > < 3, 3 >

FusionNet 3.2 256 256 < 160, 160 > < 3, 3 >

FusionNet 4.2 512 512 < 80, 80 > < 3, 3 >

FusionNet 5.2 1024 1024 < 40, 40 > < 3, 3 >

Table 2: Parameters of layers benchmarked.

VGG Direct 𝐹 (2 × 2, 3 × 3) 𝐹 (4 × 4, 3 × 3) 𝐹 (6 × 6, 3 × 3) 𝐹 (6 × 8, 3 × 3)
Max 1.33E-4 2.83E-2 1.54E-2 2.21E+1 4.25E+3
Avg 5.63E-6 5.83E-4 4.19E-4 6.43E-2 2.56E+1

Table 3: Element errors in convolution layers.

theoretical FLOPS (Floating point Operations Per Second) is 80 G
for a single core and 5.12 T for the entire instance.

Convolution layers and comparisons.We evaluate HAWC on
representative convolution layers on prevalent CNNmodels: VGG[23]
and FusionNet[20]. Table 2 summarizes the detailed configurations
of the convolution layers used in our experiments. We compare
HAWC with two widely used open-source commercial ARM opti-
mized Winograd implementations: MNN [12] and NCNN [25]. We
also compare with direct convolution and GEMMbased convolution
im2col (performing image to column before GEMM).

4.2 Accuracy
Because of Winograd algorithm’s numerical instability [14], the
result derived from Winograd algorithm is not identical to the
direct or GEMM based convolution. In general, the larger the𝑚
of 𝐹 (𝑚, 𝑟) is used, the more operations Winograd algorithm can
save but at the higher precision loss. In addition, half precision
computation, as a result of reduced precision bits, exacerbates the
numerical instability. Therefore, it is important to guarantee that
the precision loss is acceptable to make sure the method gives
meaningful convolution result. We compute the maximum error
and average error of all layers in VGG with different Winograd
algorithms (i.e., 𝐹 (𝑚, 𝑟)).

The errors are calculated by the absolute difference between the
result of HAWC (half precision Winograd) and the ground truth
calculated by direct convolutionwith long double typed data. The in-
put images are retrieved from a uniform distribution on [−0.1, 0.1],
while the kernels are generated by Xavier initialization [8].

Table 3 shows the max element difference and average element
difference. According to previous studies [3, 9], an average error of
𝐸 − 2 will not affect the stability of training and the inference can
tolerate a magnitude of higher order errors.

From the results, we can see that Winograd 𝐹 (2× 2, 3× 3), 𝐹 (4×
4, 3× 3), 𝐹 (6× 6, 3× 3) fall in the range of 𝐸 − 2 or lower in average
error. Hence, we can conclude that in HAWC, Winograd 𝐹 (2×2, 3×
3), 𝐹 (4 × 4, 3 × 3), 𝐹 (6 × 6, 3 × 3) are capable to be used without
stability issues.

APSys ’22, August 23–24, 2022, Virtual Event, Singapore Dedong Xie, Zhen Jia, Zili Zhang, and Xin Jin

0.
36

0.
25

0.
23

0.
23

0.
09

6.
64

4.
25 4.
51

5.
77

2.
48

2.
51

1.
66

1.
55

1.
60

1.
61

7.
15

4.
12

2.
53

2.
08

1.
53

7.
12

4.
09

2.
58

1.
94

1.
37

0.0

2.5

5.0

7.5

VGG1.2 VGG2.2 VGG3.2 VGG4.2 VGG5.2
Layer

Ti
m

e
(m

s)

HAWC MNN Winograd NCNN Winograd NCNN im2col NCNN direct

Figure 3: VGG on batch size 1.

27
.7

6
6.

37

39
.4

7

14
.8

2
2.

45

19
.2

6

8.
74

1.
71

15
.1

1

9.
12

1.
40

7.
89 12

.3
1

1.
65 6.

50

51
.3

3

25
.5

4

12
.7

9

6.
78

6.
46

51
.2

9

25
.5

4

12
.7

6

8.
46

6.
93

0

20

40

60

FusionNet 1.2 FusionNet 2.2 FusionNet 3.2 FusionNet 4.2 FusionNet 5.2
Layer

Ti
m

e
(m

s)

HAWC MNN Winograd NCNN Winograd NCNN im2col NCNN direct

Figure 4: FusionNet on batch size 1.

22
9.

13
68

.8
2 12

3.
58

29
.6

2 92
.1

7
18

.7
5 66
.8

5
15

.3
5

17
.4

5
5.

35

47
7.

64

27
9.

09

17
9.

08

14
1.

94

10
7.

50

47
9.

95

27
9.

26

17
8.

87

14
1.

25

10
7.

24

28
4.

79

19
4.

89

14
1.

01

14
7.

46

16
3.

03

0

200

400

600

VGG1.2 VGG2.2 VGG3.2 VGG4.2 VGG5.2
Layer

Ti
m

e
(m

s)

HAWC MNN Winograd NCNN Winograd NCNN im2col NCNN direct

Figure 5: VGG on batch size 64.

4.3 Performance
In this set of experiments, we first investigate HAWC’s latency on
the representative convolution layers and perform comparisons
with the state-of-the-art implementations. Then we evaluate our JIT
based matrix multiplication’s performance. Finally, we investigate
each stage’s latency by performing a execution time breakdown.

To evaluate HAWC, we benchmark it on Graviton 2 platform
with the convolution layers shown in Table 1. Both MNN [12] and
NCNN [25] choose the Winograd algorithms (i.e., which 𝐹 (𝑚, 𝑟) is
used) automatically with their own heuristics. We perform further
investigation on the algorithm they used and find for all the layers
except VGG 5.2, they choose 𝐹 (6 × 6, 3 × 3) as their FP16 Wino-
grad implementations. For VGG 5.2, both use 𝐹 (4 × 4, 3 × 3). We
use the same Winograd algorithms as MNN and NCNN. To show
Winograd’s superiority, we also benchmark direct convolution and
GEMM based convolution (im2col), which are provided by NCNN.

Se
gm

en
ta

tio
n

Fa
ul

t

Se
gm

en
ta

tio
n

Fa
ul

t

62
0.

54

39
8.

58

45
5.

33

17
55

.5
3

67
1.

30

38
9.

04

25
3.

43

24
8.

14

40
8.

77

29
2.

41

20
3.

80

11
4.

32

11
3.

14

33
45

.7
6

16
69

.3
6

84
2.

25

45
2.

03

43
6.

12

33
49

.2
8

16
65

.4
3

84
3.

48

45
1.

41

43
2.

81

0

1000

2000

3000

4000

FusionNet 1.2 FusionNet 2.2 FusionNet 3.2 FusionNet 4.2 FusionNet 5.2
Layer

Ti
m

e
(m

s)

HAWC MNN Winograd NCNN Winograd NCNN im2col NCNN direct

Figure 6: FusionNet on batch size 64.

3.63

4.44 4.57
4.36

3.92

2.56

3.48
3.84

4.05 3.88

0

2

4

FusionNet1.2 FusionNet2.2 FusionNet3.2 FusionNet4.2 FusionNet5.2 VGG1.2 VGG2.2 VGG3.2 VGG4.2 VGG5.2
Layer

TF
LO

PS

Figure 7: GEMM FLOPS.

Figure 3 shows the latency of single batch VGG layers on Gravi-
ton 2 platform. The result shows that HAWC outperforms NCNN
by a factor of on average 21.54× and up to 27.56×. For MNN, HAWC
achieves 9.04× speedup on average and up to 17.89× speedup. Com-
pared to GEMM based method, i.e., NCNN im2col, HAWC achieves
on average 14.20× and at most 19.78×. With respect to direct con-
volution, HAWC achieves on average 14.68× and at most 19.86×.

FusionNet results are shown in Figure 4. Comparing with NCNN,
HAWC achieves on average 6.49× speedup and up to 8.84× speedup.
HAWC is on average 5.90× and up to 7.46× faster than MNN. When
we perform the comparison between Winograd convolution and
direct (GEMM based) convolution, we can see HAWC is better than
direct (GEMM based) convolution. For NCNN and MNN, there are
situations where Winograd implementations take longer time than
direct (GEMM based) counterparts, for instance VGG3.2, VGG 4.2,
FusionNet 5.2 etc, even though Winograd has a huge theoretical
speedups. Those phenomena also indicate NCNN and MNN Wino-
grad implementations need to be optimized on many-core ARM
platform.

We also benchmark multi-batch VGG and FusionNet. The results
are shown in Figure 5 and Figure 6. We can find similar phenomena:
HAWC outperforms NCNN and MNN by a large factor. For Fusion
1.2 and Fusion 2.2, MNN reports segmentation fault, which indicates
the limited multi-batch support in MNN.

GEMM performance. To evaluate our custom GEMM, we calcu-
late FLOPS of the GEMM stage for each layer. Figure 7 shows the
FLOPS achieved by our GEMM. Our GEMM can achieve up to 4.57
TFLOPS, which is around 90% of the theoretical FLOPS of Graviton
2 platform (5.12 TFLOPS). For most layers, our GEMM achieves

Optimizing Half Precision Winograd Convolution on ARM Many-Core Processors APSys ’22, August 23–24, 2022, Virtual Event, Singapore

14.12%

70.16%

15.72%

6.51%

84.00%

9.49%

6.19%

83.95%

9.86%

9.73%
76.49%

13.78%
37.50%43.02%

19.48%0

2

4

VGG1.2 VGG2.2 VGG3.2 VGG4.2 VGG5.2
Layer

Ti
m

e(
m

s)

Input Transformation GEMM Output Transformation

Breakdown of stages in NCNN

24.50%

67.15%

8.36%

18.88%

73.82%

7.30%

10.57%

84.14%

5.29%

5.83%

89.69%

4.48%

7.69%
84.62%

7.69%0.0

0.1

0.2

0.3

VGG1.2 VGG2.2 VGG3.2 VGG4.2 VGG5.2
Layer

Ti
m

e(
m

s)

Input Transformation GEMM Output Transformation

Breakdown of stages in HAWC

Figure 8: Stage latency breakdown

above 80% of the theoretical FLOPS. There are some layers that their
GEMM stage does not achieve good FLOPS. There are two reasons.
First, in matrix multiplication stage, the matrix size is decided by
the input and output channel. If the channel number is relatively
small, 𝐶𝑏 and 𝐶𝑏 ′ are bounded by the channel number. This will
result in the matrix multiplication having low arithmetic intensity
and yields poor performance since in this situation, performance is
bound by I/O [28]. Second, in our matrix blocking implementation,
the actual matrix size may not always be dividable by the blocking
factor. We perform zero padding for that case. Such padding will
result in extra non-necessary computation.

Execution time breakdown.We investigate the execution time
of each stage in HAWC and NCNN. MNN applies fused Winograd
algorithm, which performs all the transformations and computa-
tion on each input partition in a single thread, and there is no
clear boundary between stages. Therefore, we do not perform the
breakdown of stages for MNN.

Figure 8 shows the execution time breakdown. Compared to
NCNN, HAWC’s output transformation’s proportion is much less
than NCNN. This is because we perform the scatter at the end of
matrix multiplication stage, which achieves continuous memory
access in output transformation. The scatter may increase store
instruction latency due to irregular memory access, but it does not
hurt much on the overall matrix multiplication performance as
shown previously. We also scatter the result at the end of input
transform stage so that the matrix multiplication stage can achieve
continuous memory access. The input transformation may take
more proportion for some layers. The constraint of streaming store
in ARM A64 ISA, is the streaming store instruction only supports
general-use registers and relies on register-level copy. Such con-
straint causes two extra instruction cycles. This makes streaming
store does not benefit from vector operations. Otherwise, the input
transformation may take much less time.

4.4 Case Study: Graviton 3
Amazon released the newly built Graviton 3 instances and opened
it to public recently (May, 2022) [24]. The Graviton 3, compared to
Graviton 2, provides more features e.g., BF16 support, large SIMD
width, and higher performance. We perform the benchmark with
VGG layers on an AWS c7g.16xlarge instance (powered by Graviton
3) and compare HAWC with MNN and NCNN FP16 Winograd
implementations.

The results are summarized in Figure 9.We calculate the speedups
with respect to NCNN. The results show that HAWC achieves on

8.
80

6.
97

5.
57

4.
21

10
.6

2

1.
17

1.
01

0.
85

0.
72 0.
851.
00

1.
00

1.
00

1.
00

1.
00

0

5

10

VGG1.2 VGG2.2 VGG3.2 VGG4.2 VGG5.2
Layer

Sp
ee

du
p

HAWC MNN Winograd NCNN Winograd

Figure 9: VGG on Graviton 3 relative speedup

average 7.55× and up to 10.52× speedup compared to the baseline.
For some layers, MNN is better than NCNN, and for other layers,
NCNN beats MNN. While, at the same time, none of them can
achieve similar performance as HAWC.

We remark that HAWC is mostly optimized for ARM Neoverse
N1 cores (i.e., Graviton 2 architecture). ARM Neoverse V1 cores
(i.e., Graviton 3) are the next generation architecture when we per-
formed this study. However, the ideas and optimizations in HAWC
are orthogonal to the underline hardware architecture. HAWC is
easy to be extended to the ARM Neoverse V1 cores. The current
implementation uses a fixed size of SIMD width, i.e., 128, on Neo-
verse N1. The SIMD width decides how we design the data layout
and how to perform resister blocking in matrix multiplication. So
when it comes to Neoverse V1 with a SIMD width of 512, direct
migration of HAWC can not fully utilize the hardware resources.
This is the reason why HAWC achieves less speedups on Graviton
3 platform compared with NCNN and MNN than that on Graviton
2. To optimize on ARM Neoverse V1 cores, we need to adjust the
register blocking size and data layout to utilize the large SIMD
width. In our future work, we plan to employ a platform aware
mechanism to choose the data layout and register blocking method
for HAWC.

5 CONCLUSION AND FUTUREWORK
In this paper, we present HAWC, a system that implements opti-
mized half precision Winograd based convolution for ARM many-
core processors. We employ a series of optimizations including
customized data layout suited for ARM NEON ISA, cache and reg-
ister blocking matrix multiplication, static scheduling etc. With
these techniques, HAWC can significantly outperform existing im-
plementations by 21.54× on average and up to 27.56× on Graviton
2 platform. We can achieve an up to 12.49× speedup on Graviton 3
platform, even though we did not specifically optimize for it.

In the future, we will extend HAWC to better support Graviton 3,
which has wider SIMD width and will affect our cache and register
blocking strategies. We will provide a uniform implementation to
cover most SIMD width on diverse ARM platforms. Graviton 3
also supports BF16 instead of only FP16, for which we also plan
to support it. Besides those, one possible improvement is to imple-
ment an auto-tune mechanism to jointly choose the best Winograd
algorithm, data layout, and GEMM configurations combination
according to layer parameters.

APSys ’22, August 23–24, 2022, Virtual Event, Singapore Dedong Xie, Zhen Jia, Zili Zhang, and Xin Jin

REFERENCES
[1] ARM. 2021. Arm A64 Instruction Set Architecture. Retrieved 2022-07-14 from

https://developer.arm.com/documentation/ddi0596/2021-12/Base-Instructions/
STNP--Store-Pair-of-Registers--with-non-temporal-hint-?lang=en

[2] Zehua Cheng, Weiyang Wang, Yan Pan, and Thomas Lukasiewicz. 2019. Dis-
tributed Low Precision Training Without Mixed Precision. https://doi.org/10.
48550/ARXIV.1911.07384

[3] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. 2014. Train-
ing deep neural networks with low precision multiplications. arXiv preprint
arXiv:1412.7024 (2014).

[4] Leonardo Dagum and Ramesh Menon. 1998. OpenMP: an industry standard API
for shared-memory programming. Computational Science & Engineering, IEEE 5,
1 (1998), 46–55.

[5] ARM Developer. 2013. NEON Programmer’s Guide. Retrieved 2022-05-06 from
https://developer.arm.com/documentation/den0018/a/?lang=en

[6] ARM Developer. 2022. NEON Intrinsic. Retrieved 2022-05-06 from
https://developer.arm.com/architectures/instruction-sets/intrinsics/#f:
@navigationhierarchiessimdisa=[Neon]

[7] Vincent Dumoulin and Francesco Visin. 2016. A guide to convolution arithmetic
for deep learning. arXiv preprint arXiv:1603.07285 (2016).

[8] Xavier Glorot and Yoshua Bengio. 2010. Understanding the difficulty of training
deep feedforward neural networks. In Proceedings of the Thirteenth International
Conference on Artificial Intelligence and Statistics (Proceedings of Machine Learning
Research, Vol. 9), Yee Whye Teh and Mike Titterington (Eds.). PMLR, Chia Laguna
Resort, Sardinia, Italy, 249–256. https://proceedings.mlr.press/v9/glorot10a.html

[9] Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish Narayanan.
2015. Deep Learning with Limited Numerical Precision. In Proceedings of the
32nd International Conference on International Conference on Machine Learning -
Volume 37 (Lille, France) (ICML’15). JMLR.org, 1737–1746.

[10] Zhen Jia, Aleksandar Zlateski, Fredo Durand, and Kai Li. 2018. Optimizing
N-dimensional, winograd-based convolution for manycore CPUs. In Proceed-
ings of the 23rd ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming. 109–123.

[11] Qingye Jiang, Young Choon Lee, and Albert Y Zomaya. 2020. The power of
ARM64 in public clouds. In 2020 20th IEEE/ACM International Symposium on
Cluster, Cloud and Internet Computing (CCGRID). IEEE, 459–468.

[12] Xiaotang Jiang, HuanWang, Yiliu Chen, Ziqi Wu, LichuanWang, Bin Zou, Yafeng
Yang, Zongyang Cui, Yu Cai, Tianhang Yu, Chengfei Lv, and Zhihua Wu. 2020.
MNN: A Universal and Efficient Inference Engine. In MLSys.

[13] Andrew Lavin. 2020. wincnn: A simple python module for computing minimal
Winograd convolution algorithms for use with convolutional neural networks. Re-
trieved 2022-05-03 from https://github.com/andravin/wincnn

[14] Andrew Lavin and Scott Gray. 2016. Fast algorithms for convolutional neural
networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition. 4013–4021.

[15] Yann LeCun and Yoshua Bengio. 1998. Convolutional Networks for Images, Speech,
and Time Series. MIT Press, Cambridge, MA, USA, 255–258.

[16] Dongsheng Li, Dan Huang, Zhiguang Chen, and Yutong Lu. 2021. Optimizing
Massively ParallelWinograd Convolution onARMProcessor. In 50th International
Conference on Parallel Processing. 1–12.

[17] Guangli Li, Zhen Jia, Xiaobing Feng, and Yida Wang. 2021. LoWino: Towards
Efficient Low-Precision Winograd Convolutions on Modern CPUs. In 50th Inter-
national Conference on Parallel Processing. 1–11.

[18] Jinwook Oh, Sae Kyu Lee, Mingu Kang, Matthew Ziegler, Joel Silberman, Ankur
Agrawal, Swagath Venkataramani, Bruce Fleischer, Michael Guillorn, Jungwook
Choi, Wei Wang, Silvia Mueller, Shimon Ben-Yehuda, James Bonanno, Nianzheng
Cao, Robert Casatuta, Chia-Yu Chen, Matt Cohen, Ophir Erez, Thomas Fox,
George Gristede, HowardHaynie, Vicktoria Ivanov, Siyu Koswatta, Shih-Hsien Lo,
Martin Lutz, Gary Maier, Alex Mesh, Yevgeny Nustov, Scot Rider, Marcel Schaal,
Michael Scheuermann, Xiao Sun, Naigang Wang, Fanchieh Yee, Ching Zhou,
Vinay Shah, Brian Curran, Vijayalakshmi Srinivasan, Pong-Fei Lu, Sunil Shukla,
Kailash Gopalakrishnan, and Leland Chang. 2020. A 3.0 TFLOPS 0.62V Scalable
Processor Core for High Compute Utilization AI Training and Inference. In 2020
IEEE Symposium on VLSI Circuits. 1–2. https://doi.org/10.1109/VLSICircuits18222.
2020.9162917

[19] Markus Püschel, Franz Franchetti, and Yevgen Voronenko. 2011. Encyclopedia of
Parallel Computing. Springer, Chapter Spiral.

[20] Tran Minh Quan, David Grant Colburn Hildebrand, and Won-Ki Jeong. 2021.
Fusionnet: A deep fully residual convolutional neural network for image seg-
mentation in connectomics. Frontiers in Computer Science (2021), 34.

[21] Lawrence R Rabiner and Bernard Gold. 1975. Theory and application of digital
signal processing. Englewood Cliffs: Prentice-Hall (1975).

[22] Joseph Redmon and Ali Farhadi. 2018. YOLOv3: An Incremental Improvement.
https://doi.org/10.48550/ARXIV.1804.02767

[23] Karen Simonyan and Andrew Zisserman. 2014. Very Deep Convolutional Net-
works for Large-Scale Image Recognition. https://doi.org/10.48550/ARXIV.1409.
1556

[24] Sébastien Stormacq. 2022. New – Amazon EC2 C7g Instances, Powered by AWS
Graviton3 Processors. Retrieved 2022-07-15 from https://aws.amazon.com/blogs/
aws/new-amazon-ec2-c7g-instances-powered-by-aws-graviton3-processors/

[25] Tencent. 2022. ncnn is a high-performance neural network inference computing
framework optimized for mobile platforms. Retrieved 2022-05-05 from https:
//github.com/Tencent/ncnn

[26] Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Torresani, and Manohar Paluri.
2015. Learning spatiotemporal features with 3d convolutional networks. In
Proceedings of the IEEE international conference on computer vision. 4489–4497.

[27] Jeff Underhill, Arthur Petitpierre, and Sudhir Raman. 2020. Enable up to 40%
better price-performance with AWS Graviton2 based Amazon EC2 instances. Re-
trieved 2022-05-06 from https://pages.awscloud.com/rs/112-TZM-766/images/
2020_0501-CMP_Slide-Deck.pdf

[28] Samuel Williams, Andrew Waterman, and David Patterson. 2009. Roofline: an
insightful visual performance model for multicore architectures. Commun. ACM
52, 4 (2009), 65–76.

[29] S. Winograd. 1980. Arithmetic Complexity of Computations. Society for Industrial
and Applied Mathematics. https://books.google.ca/books?id=wANiW8bGQpEC

[30] Rengan Xu, Frank Han, and Quy Ta. 2018. Deep learning at scale on nvidia
v100 accelerators. In 2018 IEEE/ACM Performance Modeling, Benchmarking and
Simulation of High Performance Computer Systems (PMBS). IEEE, 23–32.

[31] Aleksandar Zlateski, Zhen Jia, Kai Li, and Fredo Durand. 2019. The Anatomy
of Efficient FFT and Winograd Convolutions on Modern CPUs. In Proceedings
of the ACM International Conference on Supercomputing (Phoenix, Arizona) (ICS
’19). Association for Computing Machinery, New York, NY, USA, 414–424. https:
//doi.org/10.1145/3330345.3330382

https://developer.arm.com/documentation/ddi0596/2021-12/Base-Instructions/STNP--Store-Pair-of-Registers--with-non-temporal-hint-?lang=en
https://developer.arm.com/documentation/ddi0596/2021-12/Base-Instructions/STNP--Store-Pair-of-Registers--with-non-temporal-hint-?lang=en
https://doi.org/10.48550/ARXIV.1911.07384
https://doi.org/10.48550/ARXIV.1911.07384
https://developer.arm.com/documentation/den0018/a/?lang=en
https://developer.arm.com/architectures/instruction-sets/intrinsics/#f:@navigationhierarchiessimdisa=[Neon]
https://developer.arm.com/architectures/instruction-sets/intrinsics/#f:@navigationhierarchiessimdisa=[Neon]
https://proceedings.mlr.press/v9/glorot10a.html
https://github.com/andravin/wincnn
https://doi.org/10.1109/VLSICircuits18222.2020.9162917
https://doi.org/10.1109/VLSICircuits18222.2020.9162917
https://doi.org/10.48550/ARXIV.1804.02767
https://doi.org/10.48550/ARXIV.1409.1556
https://doi.org/10.48550/ARXIV.1409.1556
https://aws.amazon.com/blogs/aws/new-amazon-ec2-c7g-instances-powered-by-aws-graviton3-processors/
https://aws.amazon.com/blogs/aws/new-amazon-ec2-c7g-instances-powered-by-aws-graviton3-processors/
https://github.com/Tencent/ncnn
https://github.com/Tencent/ncnn
https://pages.awscloud.com/rs/112-TZM-766/images/2020_0501-CMP_Slide-Deck.pdf
https://pages.awscloud.com/rs/112-TZM-766/images/2020_0501-CMP_Slide-Deck.pdf
https://books.google.ca/books?id=wANiW8bGQpEC
https://doi.org/10.1145/3330345.3330382
https://doi.org/10.1145/3330345.3330382

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Winograd-based Convolution
	2.2 Half precision Arithmetic on ARM

	3 Design
	3.1 Data Layout
	3.2 Input and Kernel Transformation
	3.3 Matrix Multiplication
	3.4 Output Transformation
	3.5 Stage-wise Static Parallel Scheduling

	4 Evaluation
	4.1 Experiments Setup
	4.2 Accuracy
	4.3 Performance
	4.4 Case Study: Graviton 3

	5 Conclusion and Future work
	References

